Fluor
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Általános | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Név, vegyjel, rendszám | fluor, F, 9 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Latin megnevezés | fluorum | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elemi sorozat | halogének | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Csoport, periódus, mező | 17, 2, p | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Megjelenés | cseppfolyós fluor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Megjelenés | gáz: nagyon világos sárga; folyadék: világos sárga; szilárd: alfa fázis átlátszatlan, béta fázis átlátszó | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomtömeg | 18,998403163(6) g/mol[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronszerkezet | [He] 2s2 2p5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronok héjanként | 2, 7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fizikai tulajdonságok | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Halmazállapot | gáz | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sűrűség | (0 °C, 101,325 kPa) 1,696 g/l | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Olvadáspont | 53,48 K (-219,67 °C, -363,41 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Forráspont | 85,03 K (-188,11 °C, -306,60 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Olvadáshő | (F2) 0,510 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Párolgáshő | (F2) 6,51 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Moláris hőkapacitás | (25 °C) (F2) 31,304 J/(mol·K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomi tulajdonságok | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kristályszerkezet | lap-középpontos monoklin (alacsony hőmérsékleten) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidációs szám | −1 (oxidálja az oxigént) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronegativitás | 3,98 (Pauling-skála) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionizációs energia | 1.: 1681,0 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2.: 3374,2 kJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3.: 6050,4 kJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomsugár | 50 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomsugár (számított) | 42 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kovalens sugár | 64 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Van der Waals-sugár | 135 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Egyebek | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mágnesség | diamágneses [2] (−1,2×10−4) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hővezetési tényező | (300 K) 25,91 mW/(m·K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS-szám | 7782-41-4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fontosabb izotópok | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hivatkozások |
A fluor a periódusos rendszer kémiai elemeinek egyike. Vegyjele F, rendszáma 9. Régies magyar elnevezése folany.[3] Standard nyomáson és hőmérsékleten halvány sárga színű, erősen mérgező, kétatomos molekulájú gáz. A fluor a hetedik főcsoport eleme, azaz a halogének közé tartozik, közülük a legkönnyebb. Vegyértékelektron-szerkezete 2s2 2p5. Az összes elem közül a legelektronegatívabb és legreaktívabb, szinte az összes többi elemmel, köztük néhány nemesgázzal is alkot vegyületeket.
A fluor a 24. leggyakoribb elem az univerzumban és a 13. legnagyobb mennyiségben előforduló elem a földkéregben. A fluor elsődleges ásványi forrását, a fluoritot vagy folypátot először 1529-ben említik írásban: ércekhez adták, hogy csökkentsék azoknak az olvadáspontját. A fluor név a folypát latin elnevezéséből, a fluor lapisból ered (fluere = folyni).[4] 1810-ben vetették fel a fluort, mint addig ismeretlen elemet, de tiszta fluor előállítása nagy reaktivitása miatt csak 1886-ban sikerült Henri Moissannak, alacsony hőmérsékletű elektrolízissel; ezt az eljárást mindmáig alkalmazzák. A fluorgázt legnagyobb mennyiségben urándúsításra hasznosítják, ipari szintű előállítása a második világháborúban, a Manhattan terv idején kezdődött.
A tiszta fluor előállításának drágasága miatt inkább a vegyületeit alkalmazzák az iparban. A kibányászott fluoritnak körülbelül a felét az acélgyártás során alkalmazzák, a másik feléből pedig elsősorban hidrogén-fluoridot gyártanak, amely fontos előanyag különféle fluortartalmú szerves vegyületek, vagy az alumíniumgyártásnál kulcsszerepet betöltő kriolit előállításánál. A szerves fluoridok nagy kémiai és termikus stabilitással rendelkeznek, ezért hűtőközegként alkalmazzák őket. Különböző gyógyszerek, például az atorvasztatin vagy a fluoxetin is tartalmaznak fluort, emellett a fluoridoknak nagy szerepe van a fogszuvasodás kialakulásának megakadályozásában. A fluorkémiai termékek kereskedelme világszinten eléri az évi 15 milliárd dollárt.
A perfluorozott szénhidrogének (fluorokarbonok) általában üvegházhatású gázok, globális felmelegedési potenciáljuk 100–20 000-szerese a szén-dioxidnak. A hajtógázként használt klór- és fluortartalmú CFC-gázok bizonyíthatóan károsítják az ózonréteget, és az ózonlyuk kialakulásának egyik fő felelősei. A szerves fluorvegyületek a szén–fluor kötés ereje miatt megtalálhatóak a környezetben. A fluornak nincs ismert szerepe az emlősök anyagcseréjében, de néhány növény szintetizál szerves fluortartalmú mérgeket, hogy így védekezzen a növényevők ellen.
Tulajdonságok
Elektronszerkezet
A fluoratomban összesen kilenc elektron van, eggyel kevesebb, mint a neonban. Elektronszerkezete 1s22s22p5: két elektron a belső 1s alhéjon, hét másik a körülötte lévő teljesen feltöltött 2s és a 2p alhéjon helyezkedik el, mely utóbbiból egy elektron hiányzik a nemesgázszerkezet eléréséhez. A külső héjon lévő elektronoknak nincs árnyékoló hatásuk ezért nagy – 9 − 2 = 7 – effektív magtöltés hat rájuk, ami befolyásolja az atom fizikai tulajdonságait is.[5]
A fluor első ionizációs energiája a harmadik legnagyobb az elemek közül a hélium és neon után,[6] ami megnehezíti az elektronok eltávolítását a semleges atomról. Elektronaffinitása is kiemelkedően magas, a klór után a második legmagasabb,[7] és hajlamos egy elektron felvételével a neonnal izoelektronos szerkezetet kialakítani.[5] A fluor elektronegativitása az összes elem közül a legmagasabb.[8] A fluor kovalens rádiusza 60 pikométer körüli, hasonlóan a periódusos rendszerben előtte lévő oxigénhez és az utána következő neonhoz.[9][10]
Molekulaszerkezet
A fluor elemi állapotban a többi halogénhez hasonlóan kétatomos molekulákat alkot. A kötéshossz a fluormolekulában 144 pm, amely rövidebb, mint a többi elemmolekulában lévő egyszeres kötések (a gyémántban a szén–szén kötések 154 pm hosszúságúak). A rövid kötések ellenére a fluormolekula disszociációs energiája mindössze 158 kJ/mol, ami körülbelül megfelel a jódmolekulában lévő 266 pm hosszúságú kötés felszakításához szükséges energiának.[11] Ennek oka az, hogy a fluor nemkötő elektronpárjai nagyon közel vannak egymáshoz és erős taszító hatás lép fel köztük, így gyengítve a kötést.[12] A molekulában lévő gyenge kötés felelős a fluor szokatlanul nagy reaktivitásáért.
A molekulapálya-elmélet alapján meghatározható a F2 molekula kötése. Az egyedi atomok s- és p-pályái kombinálódnak és kötő, valamint lazító molekulapályákat alkotnak. A fluoratom 1s és 2s pályái mindig σs és σs* kötő- és lazító-molekulapályává alakulnak. Mivel ezek az orbitálok teljesen fel vannak töltve elektronokkal, nem járulnak hozzá a kötéshez. A 2p orbitálokból hat különböző energiájú molekulapálya alakul ki. Ezek a kötő σp-, πy- és πz-pályák, valamint a lazító p*-, πy*- és πz*-pályák. Az elektronok úgy oszlanak meg, hogy az összes kötő és a π* lazító orbitálok telítettek. A kötésrend ezért (6-4)/2 = 1, azaz egyszeres kötésről beszélünk.[13] A fluornál megfigyelhető diamágneses tulajdonság is.
Reaktivitás
A fluormolekula kötési energiája jóval alacsonyabb a klórénál vagy a bróménál, és hasonló a könnyen felszakítható peroxidok kötési energiájához. Ez, valamint az atom magas elektronegativitása felelős a fluormolekula könnyű felszakíthatóságáért és nagy reaktivitásáért.[14][15] A más atomokkal létesített kötései ezzel ellentétben nagyon erősek, ugyancsak a nagy elektronegativitás értékének köszönhetően. Reakcióiban szinte mindig az oxidálószer szerepét tölti be. Kevésbé reaktív anyagok, mint például az acélpor, üvegcserepek vagy azbesztszálak hevesen reagálnak a hideg fluorgázzal. A fa és a víz fluor áramban spontán meggyulladnak.[16][17] Nedvesség jelenlétében megtámadja a szilícium-dioxidot is (hidrogén-fluorid képződése miatt, lásd a lenti reakcióegyenletet), ezért nem lehet üvegedényben előállítani és tárolni, csak speciális védőréteggel (fluorozott szénhidrogénnel) ellátott kvarcpalackban.
- SiO2 + 6 HF → H2SiF6 + 2 H2O
A fluor reakciói (angolul). YouTube |
Az elemi fluor fémekkel való reakciói különböző körülményeket igényelnek. Az alkálifémek robbanást okoznak és az alkáliföldfémek is zömmel hevesen reagálnak. Ezeket leszámítva a legtöbb fém passziválódik a felületén képződő fém-fluorid réteg miatt, ezért porítva kell őket reagáltatni.[14] A nemesfémek reakciójához tiszta fluorgáz szükséges 300–450 °C-os hőmérsékleten.[18] Néhány szilárd nemfémes elem (például a kén vagy a foszfor) is hevesen reagál fluorban a cseppfolyós levegő hőmérsékletén.[19] A hidrogén-szulfid[19] és a kén-dioxid[20] készségesen egyesül a fluorral, a kén-dioxid esetenként robbanással. A kénsav jóval kisebb aktivitást mutat, reakciója csak magasabb hőmérsékleten megy végbe.[21]
A hidrogénnel hidegen, sötétben is robbanásszerűen egyesül.[22] Reakcióba lép a nedves levegőben lévő vízzel is; a vízgőz fluor áramban fényes lánggal ég, és a veszélyes hidrogén-fluorid (más néven folysav, HF), valamint hidrogén-peroxid keletkezik:
- F2 + 2 H2O → H2O2 + 2 HF
A szén szobahőmérsékleten fluorral reagálva fluormetánt ad, 400 °C fölött szén-monofluorid, magasabb hőmérsékleten pedig többféle fluorokarbon képződik, néha robbanással.[23] Amíg a szén-dioxid és a szén-monoxid szobahőmérsékletnél valamivel magasabb hőmérsékleten reagálnak,[24] addig a paraffinok és más szerves vegyületek heves reakciókat idéznek elő:[25] míg a teljesen szubsztituált halogénezett szénhidrogének – mint a normálisan éghetetlen szén-tetraklorid – is robbanásszerűen reagálhatnak.[26] Bár a nitrogén-trifluorid stabil, a fluor nitrogénnel való reakciójához elektromos kisülés és megemelt hőmérséklet szükséges a nitrogén erős hármas kötése miatt.[27] Más nitrogénvegyületek, például az ammónia vagy a hidrazin erősen exoterm reakcióba lépnek a fluorral.[28][29] Az oxigén standard körülmények között nem reagál a fluorral, de alacsony nyomáson és hőmérsékleten elektromos kisülések használatával reakcióra bírható. Az így keletkező termékek melegítés hatására visszaalakulnak elemeikre.[30][31][32] Nehezebb halogének[33] valamint a radon[34] készségesen reagálnak a fluorral, a xenon és a kripton reakciójához viszont speciális körülmények szükségesek.[35]
Fázisai
Szobahőmérsékleten a fluor kétatomos molekulákat alkot,[16] gáz halmazállapotú, színe halványsárga (egyes források szerint zöldessárga), erősen maró tulajdonságú.[36] Jellegzetes szúrós szaga van, amit már 20 ppb koncentrációban is érezni lehet.[37] −188 °C-on – az oxigénhez és a nitrogénhez hasonló hőmérsékleten – lecsapódik, folyadékállapotban élénk sárga színű.[38]
A fluornak két szilárd formája létezik, az α- és β-fluor. Az utóbbi −220 °C-on kristályosodik rendezetlen köbös kristályrendszerbe – ellentétben a többi halogén rombos szerkezetével. A β-fluor átlátszó és lágy.[38][39][40] További hűtés hatására −228 °C-on fázisváltáson megy keresztül, átalakul kemény, átlátszatlan α-fluorrá, melynek monoklin kristályrendszere van sűrűn álló, döntött molekularétegekkel. Az átalakulás β-ból α-fázisba nagyobb energiafelszabadulással jár, mint a fluor kondenzációja, és igen heves lehet.[39][40]
Izotópok
A fluornak mindössze egy stabil izotópja, a tíz neutront tartalmazó 19F létezik, és egyedül ez fordul elő számottevő mennyiségben a természetben.[41] Giromágneses aránya nagy és kivételesen érzékeny a mágneses mezőre. Mivel ez az egyetlen stabil izotóp, felhasználják a mágnesesrezonancia-képalkotásban.[42] A fluornak eddig tizenhét radioaktív izotópját sikerült előállítani, 14-től 31-ig terjedő tömegszámokkal. Ezek közül a leghosszabb életű a 18F, felezési ideje 109,77 perc. A többi izotópnak 70 másodpercnél rövidebb felezési ideje van, legtöbbjük kevesebb mint fél másodperc alatt elbomlik.[43] A 17F és a 18F pozitív béta-bomláson, a könnyebb izotópok elektronbefogáson, a 19F-nél nehezebb izotópok pedig negatív béta-bomláson vagy neutronkibocsátáson keresztül bomlanak el.[43] A fluornak egy metastabil izomerje ismert, a 18mF, melynek felezési ideje 234 nanoszekundum.[44]
Előfordulása
Univerzum
Rendszám | Elem | Relatív mennyiség |
---|---|---|
6 | Szén | 4 800 |
7 | Nitrogén | 1 500 |
8 | Oxigén | 8 800 |
9 | Fluor | 1 |
10 | Neon | 1 400 |
11 | Nátrium | 24 |
12 | Magnézium | 430 |
A fluor aránya az univerzumban 400 ppb, kivételesen alacsony a könnyebb elemek között: mindössze a huszonnegyedik leggyakoribb elem, és a széntől a magnéziumig az összes elem legalább hússzor akkora mennyiségben található meg, mint a fluor.[46] Ennek oka az, hogy a csillagokban zajló nukleoszintézis folyamata elkerüli a fluort, mert a reakciókban keletkező fluoratomok nagy nukleáris hatáskeresztmetszettel rendelkeznek, így hidrogénnel vagy héliummal történő további fúziós reakciók során továbbalakulnak oxigénné vagy neonná.[46][47]
Ezen átmeneti létezésen túl három értelmezés született a fluor jelenlétére vonatkozóan:[46][48]
- II típusú szupernóvákban neonatomok neutrínókkal való ütközés hatására átalakulhatnak fluorrá,
- a Wolf–Rayet-csillagokban a nagy sebességű napszél elsodorhatja a képződő fluort a hidrogén- és héliumatomoktól,
- az aszimptotikus óriáscsillagokban a fluor kiemelkedik a fúziós zónából a konvekciós áramlatokkal.
Föld
A fluor a tizenharmadik leggyakoribb elem a földkéregben, tömegének körülbelül 600–700 milliomod részét teszi ki.[49] Az elemi fluor könnyedén reagálna a Föld légkörében lévő vízgőzzel, ez eleve kizárja az elemi fluor természetben való előfordulását.[50][51] A természetben csak vegyületei formájában található meg, legfontosabb ásványai a fluorit (CaF2), a kriolit (Na3AlF6) és a fluorapatit (Ca5(PO4)3F).[49][52] A fluorit vagy folypát, egy világszerte bőséggel megtalálható színes ásvány a fluor elsődleges forrása. Legnagyobb termelői Kína és Mexikó. Korábban az Egyesült Államok volt a vezető kitermelő, de 1995-ben beszüntették a bányászatát.[52][53][54][55] Bár a fluorapatit tartalmazza a világ összes fluorjának jó részét, de alacsony fluortartalma miatt (3,5 tömegszázalék) mint foszfátot használják fel. A kriolitot korábban alumínium kinyerésére használták, ma nagy tömegben alkalmazzák az alumíniumgyártásban. Mióta a Grönland nyugati partján lévő legfőbb lelőhelye 1987-ben kimerült, a kriolit legnagyobb részét mesterségesen szintetizálják.[52]
Fontosabb fluortartalmú ásványok | ||
Fluorit | Fluorapatit | Kriolit |
Egyéb ásványok, mint például a topáz, is tartalmaznak fluort. Az alkáliföldfém- és más fluoridok rossz oldhatósága miatt a tengervízben csak kis koncentrációban (1,2 ppm) van jelen, ez a forrás kitermelésre nem hasznosítható.[52] Nyomnyi mennyiségű fluororganikus vegyületeket kimutattak vulkánkitörésekben és hőforrásokban, ezek eredete egyelőre tisztázatlan.[56] Sokáig vita tárgyát képezte, hogy az antazonit nevű ásványban elemi fluor található-e meg, melyet az összetört kristály szaga sugallt.[57][58] Egy 2012-es tanulmány 0,04 tömegszázaléknyi elemi fluorról számol be, amit az ásványban mágnesesrezonancia-spektroszkópiával mutattak ki. A fluor jelenlétét az okozhatja, hogy a kristályon belül apró uránzárványok ionizáló sugárzása hatására a kalcium-fluorid elemeire bomlik, és a képződő fluorgáz kicsi, elszigetelt zárványokat alkotva megmaradhat.[58]
Története
Korai felfedezések
Georgius Agricola 1529-ben említi meg a fluoritot, mint az ércek és a salak olvadáspontjának csökkentésére használt adalékot.[59][60][m 1] Az ő tollából származik a latin fluorés (fluo - folyás, áramlás) szó a fluorit kőzetre. Innen ered a fluorit mint folypát elnevezése, amelyet még ma is gyakran használnak.[64][65][66] A fluoritról később bebizonyosodott, hogy összetételét tekintve valójában kalcium-difluorid.[67]
Egyes források szerint egy nürnbergi üvegműves, Heinrich Schwanhard már 1670-ben használt hidrogén-fluoridot az üveg díszítésére,[68] más források szerint a hidrogén-fluorid vizes oldatát csak 1720-tól kezdődően használták fel üveg maratásra.[67][69] Ezt a jelenséget Andreas Sigismund Marggraf 1764-ben jegyezte fel, amikor fluoritot tömény kénsav jelenlétében hevítette, és az így kapott oldat korrodálta az üvegtartályt.[70][71] A svéd kémikus Carl Wilhelm Scheele 1771-ben megismételte a kísérletet, és a keletkezett savas terméket fluss-spats-syran-nak (folysav, vagy másképpen hidrogén-fluorsav) nevezte el.[71][72] 1810-ben a francia fizikus, André-Marie Ampère vetette fel, hogy a folysavat hidrogén és egy klórhoz hasonló elem alkotja.[73] Sir Humphry Davy javaslatára, az akkor még ismeretlen anyagot a folysav (fluoric acid) és a halogének -ine szuffixumából összetéve fluorine-nak nevezték el. A legtöbb európai nyelven azóta is ezt a szót vagy módosulatait használják az elem megnevezésére. A görög, orosz és más nyelvekben viszont Ampère javaslatára a ftor szó, és annak változatai terjedtek el, amely a görög φθόριος (phthoriosz – romboló) szóból ered.[74][75] Az új latin név, a fluorum után az elem vegyjele F; a régebben használatos Fl szimbólum 2012 óta a fleróviumot jelöli.[76]
Izolációja
A fluorral végzett kezdeti kísérletek annyira veszélyesek voltak, hogy a folysavval történt szerencsétlenség után több 19. századi kísérletező is „fluor-mártírrá” vált. Az akkori kutatók ugyanis nem voltak tudatában a folysav veszélyességének, ezért sokan egészségüket (vakság) vagy életüket adták a tudományért.[m 2] Az elemi fluor izolációja különösen nehéz volt, mert egyrészt mind a fluor, mind a folysav rendkívül korrozív, maró anyag, másrészt nem állt rendelkezésre egyszerű és alkalmas elektrolit.[67][77] Edmond Frémy posztulálta, hogy a tiszta folysavból elektrolízissel előállítható az elemi fluor, ezért kidolgozott egy módszert, amellyel savított kálium-bifluoridból vízmentes mintákat állított elő. Ehelyett felfedezte, hogy az így keletkezett tiszta hidrogén-fluorid nem vezeti az elektromosságot, azaz elektromos szigetelő.[67][77][78] Frémy egykori diákja, Henri Moissan kitartott, és sok próbálgatás után felfedezte, hogy a kálium-bifluorid és a száraz hidrogén-fluorid keveréke vezető, így megvalósítható az elektrolízis. Annak érdekében, hogy az elektrokémiai cellában található platina gyors korrózióját elkerülje, egy speciális fürdő segítségével rendkívül alacsony hőmérsékletre hűtötte a reakciót; ellenállóbb, kovácsolt platina-irídium cellát, valamint fluoritdugókat alkalmazott.[77][79] 1886-ban, sok vegyész 74 évnyi erőfeszítése után Moissan sikeresen izolálta az elemi fluort.[78][80] 1906-ban, két hónappal a halála előtt Moissan megkapta a kémiai Nobel-díjat.[81][m 3] Nem tisztázott, hogy viszonylag rövid életéért (54 év) nem a fluorral való kísérletezések-e a felelősek.
-
1887-es vázlat Moissan szerkezetéről
-
Moissan Nobel-díj fényképe
Későbbi felhasználása
A General Motors az 1920-as évek végén kísérleteket folytatott a CFC-k hűtőközegként való alkalmazásával kapcsolatban, majd 1930-ban a GM és a DuPont közösen megalapította a Kinetic Chemichalst a Freon-12 (CCl2F2) értékesítésére. A Freon-12 felváltotta a korábbi, mérgezőbb vegyületeket, megnövelte az igényt a háztartási hűtőszekrényekre, gyártása pedig jövedelmezővé vált: 1949-ben a DuPont felvásárolta a Kinetic Chemicalst, és számos más freonvegyület forgalmazásába kezdett.[82][83][84] A poli(tetrafluoretilén)t vagy teflont 1938-ban véletlenül fedezte fel Roy J. Plunkett, miközben hűtőanyagokon dolgozott a Kineticnél. A teflon páratlan kémiai és termális ellenállásának köszönhetően 1941-ben megkezdődött a tömegtermelése.[82][83]
Az elemi fluor nagyipari előállítása a második világháború alatt kezdődött meg. Németországban magas hőmérsékletű elektrolízissel állítottak elő tonnaszám klór-trifluoridot, amit gyújtóbombákban terveztek felhasználni,[85] a Manhattan tervben pedig hatalmas mennyiségű urán-hexafluoridot használtak fel urándúsításra. Mivel az urán-hexafluorid ugyanolyan korrozív, mint maga a fluor, ezért a gázdiffúziós eljárásban alkalmazott berendezéseknek különleges anyagokból kellett lenniük: a membránok nikkelből, a tömítések fluorpolimerekből készültek, hűtő- és kenőanyagoknak pedig folyékony fluorokarbonokat használtak. Ez a virágzó atomipar elősegítette a háború utáni fluorkémiai fejlesztéseket.[86]
Vegyületei
A fluor kémiai vegyületek hatalmas választékát alkotja, amely magába foglal mind szerves, mind szervetlen vegyületeket. A fluor egyesül fémekkel, nemfémekkel, félfémekkel és a legtöbb nemesgázzal is.[87] Vegyületeiben az oxidációs száma majdnem mindig −1. Nagy elektronaffinitása miatt elsődlegesen ionos kötéseket létesít; ha kovalens kötéssel kapcsolódik, akkor ezek a kötések polárisak, és szinte kivétel nélkül egyszeresek.[88][89]
Fémekkel
Az alkálifémek jól oldódó, ionos monofluoridokat képeznek vele, melyeknek a nátrium-kloriddal és a többi analóg kloriddal megegyező köbös kristályrendszerük van.[90][91] Alkáliföldfémekkel erős ionos kötésekkel rendelkező, rosszul oldódó difluoridokat alkot,[92] kivéve a berillium-fluoridot, amely kovalens tulajdonságokat is mutat, és a kvarchoz hasonló szerkezetű.[93] Ritkaföldfémekkel és még sok másik fémmel ionos trifluoridokat alkot.[94][95][96]
Kovalens tulajdonságok a tetrafluoridoknál tűnnek először szembe: a cirkónium, hafnium[97][98] és számos aktinoida[99] magas olvadáspontú ionos vegyületeket alkot a fluorral,[100][m 4] míg a titán,[103] a vanádium,[104] és a nióbium vegyületei polimer jellegűek,[105] melyek olvadáspontja, vagy bomlási hőmérséklete nem több 350 °C-nál.[106] A pentafluoridok folytatják ezt a tendenciát a lineáris polimereikkel és az oligomer komplexeikkel.[107][108][109] Tizenhárom fém hexafluoridja ismert,[m 5] mind oktaéderes szerkezetű és többnyire illékony, szilárd anyagok, de például molibdén-hexafluorid és a rénium-hexafluorid folyékony, a volfrám-hexafluorid pedig gáz halmazállapotú.[110][111][112] A rénium-heptafluorid az egyetlen ismert heptafluorid, amely egy alacsony olvadáspontú, szilárd anyag, pentagonális bipiramisos molekulaalakkal.[113] Az ennél több fluoratommal rendelkező fémfluoridok kiváltképp reaktívak.[114]
Fém-fluoridok szerkezete | ||
Nátrium-fluorid, ionos | Bizmut-pentafluorid, polimeres | Rénium-heptafluorid, molekuláris |
Hidrogénnel
A fluor hidrogénnel egyesülve hidrogén-fluoridot alkot. A hidrogén-fluorid molekulái hidrogénkötéssel kapcsolódva egymáshoz halmazokat alkotnak, emiatt a tulajdonságai közelebb állnak a vízéhez, mint a hidrogén-kloridéhoz.[115][116][117] Forráspontja jóval magasabb a nála nehezebb hidrogén-halogenidek forráspontjánál, és velük ellentétben korlátlanul elegyedik vízzel.[118] A hidrogén-fluorid vízzel érintkezve könnyedén hidratálódik, oldata – a többi hidrogén-halogenid oldatával ellentétben, melyek erős savként viselkednek – gyenge sav.[119] Velük ellentétben viszont képes megtámadni az üveget.[120]
Nemfémekkel és félfémekkel
A félfémek és a p-mező nemfémeinek kettős fluoridjai általában kovalensek, változó reaktivitással. A harmadik periódusban lévő, valamint az annál nehezebb nemfémek hipervalens vegyületeket képezhetnek a fluorral.[122]
A bór-trifluorid molekula sík alakú, és egy be nem töltött elektronoktettel rendelkezik. Ez a vegyület Lewis-savként viselkedik, és egyesül különböző Lewis-bázisokkal, adduktumokat hozva létre.[123] A szén-tetrafluorid közömbös, tetraéder alakú molekula, csoportbeli analógjai, a szilícium- és germánium-tetrafluorid szintén tetraéderes szerkezetűek,[124] de ők a szén-tetrafluoriddal ellentétben Lewis-savként viselkednek.[125][126] A nitrogéncsoport elemeinek trifluoridjai reaktivitása és bázicitása a molekulatömeggel növekszik, habár a nitrogén-trifluorid ellenáll a hidrolízisnek és nem mutat bázikus tulajdonságokat.[127] A fluor, arzén és antimon pentafluoridjai reaktívabbak, mint a megfelelő trifluoridjaik, az antimon-pentafluorid a legerősebb ismert természetes Lewis-sav.[107][128][129]
A kalkogéneknek sokféle fluoridja létezik: beszámoltak az oxigén, a kén és a szelén instabil difluoridjairól – az OF2 az egyetlen ismert vegyület, melyben az oxigén oxidációs állapota +2 –, valamint létezik a kén és a szelén tetrafluoridja, és ismert a kén, a szelén és a tellúr hexafluoridja is. Ez utóbbiak a sok kapcsolódó fluoratom miatt stabilak, a kén-hexafluorid a könnyű központi atom miatt különösen közömbös.[130][131] A klór, a bróm és a jód a fluorral alkothatnak mono-, tri- és pentafluoridokat, de egyedül a jód képes heptafluoridot létrehozni – ez egyben az egyetlen hétligandumos interhalogén.[132]
Nemesgázokkal
A nemesgázokról, mivel lezárt elektronhéjjal rendelkeznek, sokáig úgy gondolták, hogy nem lépnek reakcióba más elemekkel, egészen 1962-ig, amikor Neil Bartlett először szintetizált sikeresen xenon-hexafluorplatinátot.[133] Azóta sok más nemesgázvegyületet sikerült elkülöníteni, például xenon-difluoridot, -tetrafluoridot, -hexafluoridot és több oxifluoridot is.[134] A nemesgázok közül a kripton és a radon fluorral difluoridot alkot.[135][136][137] Argon hidrogén-fluoriddal extrém körülmények között reagál, argon-fluorohidrid keletkezése mellett.[35] A könnyebb nemesgázok fluoridjai kivételesen instabilak: a héliumnak és a neonnak egyáltalán nincsenek hosszabb élettartamú fluorvegyületeik,[138] neon-fluoridot még egyáltalán nem figyeltek meg.[139] Hélium-fluorohidridet nagy nyomáson és alacsony hőmérsékleten pár milliszekundumos időtartamra sikerült előállítani.[138]
Szerves vegyületek
A szén-fluor kötés a legerősebb kötés a szerves kémiában,[140] ez adja a fluororganikus vegyületek nagy stabilitását.[141] A természetben szinte egyáltalán nem fordul elő, de számos mesterségesen előállított vegyület tartalmazza. A szerves fluorvegyületek nagy változatosságot mutatnak, és a szerves kémia komplexitását tükrözik vissza.[82]
Egyedi molekulák
Az alkánok hidrogénatomjainak fokozatosan fluoratomokra való kicserélése a molekula számos tulajdonságát módosítja: az olvadás- és forráspont csökken, a sűrűség növekszik, a szénhidrogénekben való oldhatóság csökken, a molekula általános stabilitása pedig növekszik. A perfluorkarbonok, melyekben az összes hidrogént fluor helyettesít, a legtöbb szerves oldószerben oldhatatlanok és normális körülmények között egyedül folyékony ammóniában lévő nátriummal reagálnak.[142] Más, funkciós csoportokat tartalmazó szerves vegyületeknek is léteznek perfluorozott megfelelői, melyek a perfluorkarbonok sok tulajdonságát – például a nagy stabilitást és a hidrofóbiát – magukban hordozzák, közben a funkciós csoportjuk – leggyakrabban karboxilcsoport – megnöveli a reaktivitásukat, képessé téve őket arra, hogy különböző felületekhez hozzátapadjanak, vagy hogy felületaktív anyagként viselkedjenek.[143] A fluortartalmú felületaktív anyagok jobban képesek csökkenteni a víz felületi feszültségét, mint szénhidrogén-alapú megfelelőik.
Polimerek
A fluortartalmú polimerek nagyobb stabilitással és magasabb olvadásponttal rendelkeznek, melyet a szénhidrogén-molekulákban a hidrogének fluorra való cseréjének köszönhetnek.[144] A Poli(tetrafluoretilén) (vagy PTFE, teflon) a legegyszerűbb fluorpolimer, a polietilén perfluorozott analógja, -CF2- szerkezeti egységekből épül fel. A PTFE a várható stabilitásnövekedést mutatja, de nagyon magas olvadáspontja miatt nehezen formázható,[145] annak ellenére, hogy a PTFE magasabb hőmérsékleten hőre lágyuló polimer. Számos PTFE-származék létezik, amelyek könnyebben formázhatóak, viszont hőmérséklettűrésük alacsonyabb, például a fluorozott etilén-propilén, melyben néhány fluoratom trifluormetil-csoporttal van helyettesítve, vagy a nafion, ami szulfonsavcsoportban végződő perfluoréter oldalláncokat tartalmaz.[146][147] Néhány fluorpolimerben megmarad a hidrogénatomok egy része; a poli(vinilidén-fluorid)ban feleannyi, a poli(vinil-fluorid)ban negyedannyi fluor van, mint a PTFE-ben, de mindkettő a perfluorozott polimerekhez hasonlóan viselkedik.[148] A fluorpolimerek műszaki tulajdonságai nagyban függnek a feldolgozásuktól. A hőre lágyuló polimerek szokványos feldolgozási technikái – a kalanderezés, extrúzió, fröccsöntés – a fluorpolimerekre nem alkalmazhatók. Tipikus feldolgozási módjuk a nagy hőmérsékleten és nagy nyomáson elvégzett porzsugorítás (szinterezés), ami a fémek porkohászatához hasonlóan porózus termékhez, mikro-porozitáshoz vezethet. A szinterezés társítható egyéb módszerekkel, majd forgácsolással.[149]
Előállítása
Ipari
Az egyetlen iparilag is alkalmazott módszer a kálium-fluorid (KF) száraz hidrogén-fluoridos (HF) oldatának elektrolízise. Az oldatban a fluor mint difluoridion van jelen (KHF2). Az elektrolizáló cellák katódjaként az elektrolitot tartalmazó lágyacél kádak szolgálnak, anódként pedig összepréselt, nem kristályos grafitszénből készült rudat alkalmaznak.[53][150] A folyamathoz megemelt hőmérséklet szükséges, a KF•2HF 70 Celsius-fokon olvad meg, az elektrolízis pedig 80–100 fokon zajlik. A kálium-fluorid mint katalizátor nélkülözhetetlen szerepet tölt be a reakcióban, mivel a tiszta HF nem elektrolizálható.[151][152] A fluorgáz az anódon, a hidrogéngáz pedig a katódon fejlődik.[153]
Az elektrolit erősen korrozív természete és a fluor erős oxidáló képessége miatt számos probléma merül fel az elektrolízis során, ráadásul a fluor a keletkező hidrogénnel robbanásszerűen reagál, ezért létfontosságú a gázok keveredésének megakadályozása. Ezt általában egy fallal vagy diafragmával oldják meg, ami az elektrolitba merül. Fontos még, hogy ne kerüljön a berendezésbe kenőolaj, vagy más éghető szennyeződés.[154]
Az ipari termelés elektrolizáló cellasor alkalmazásával, 4000–6000 A áramerősséggel és 8–12 V feszültséggel folyik. Egy ilyen cellasorban egy cella mérete 3x0,8x0,6 méter, és egy tonna elektrolitot tartalmaz. Ezekhez 12 anódsorozat tartozhat, közülük mindegyik két anódból áll, és 3–4 tonna fluort termel óránként.[154]
Az előállított fluor 200 °C alatt belül passzivált falú acéltartályokban tárolható, más esetben nikkelt használnak.[155] A szabályozószelepek és csövek nikkelből készülnek, az utóbbi készülhet monelből – egyfajta nikkelötvözetből.[156] Laboratóriumban üvegcső rendszerben is szállítható fluor, alacsony nyomás és teljesen vízmentes környezet mellett,[156] más források nikkel-monel-PTFE rendszereket javasolnak.[157]
Vegyi
1986-ban, a fluor felfedezésének századik évfordulóján rendezett konferencián Karl O. Christe bemutatott egy vegyi eljárást a fluor elektrolízis nélküli előállítására. Azzal érvelt, hogy a termodinamikailag instabil, magas oxidációs számú átmenetifém-fluoridok anion képződésével stabilizálódhatnak. Így például az instabil NiF4, CuF4 vagy MnF4 stabilizálódhat a MeF62- szerkezetű anionjuk formájában. A MeF4 vegyületek Lewis-savak, ezért náluk erősebb Lewis-sav (például SbF5) képes őket sóikból felszabadítani. Az így felszabaduló MeF4 termodinamikai instabilitása miatt spontán elbomlik alacsonyabb oxidációs állapotú fluoridra, elemi fluor képződése közben. Christe a reakcióhoz K2MnF6-ot használt, amit hidrogén-fluorid oldatból nyert elemi fluor felhasználása nélkül. A reakció passzivált teflonbevonatos rozsdamentes acéltartályban, 150 °C-on, atmoszferikus nyomáson, egy óra alatt ment végbe, és a kitermelés nagyobb volt, mint 40%.[158]
- 2 KMnO4 + 2 KF + 10 HF + 3 H2O2 → 2 K2MnF6 + 8 H2O + 3 O2↑
- 2 K2MnF6 + 4 SbF5 → 4 KSbF6 + 2 MnF3 + F2↑
Christe később megjegyezte, hogy a reagensek már több mint száz éve ismertek voltak, és akár Moissan is előállhatott volna ezzel a módszerrel.[158]
Felhasználása
Ipari
A fluoritbányászat, ami a világ összes fluortermelésének legnagyobb hányadát szolgáltatja, 1989-ben érte el a csúcsát, ebben az évben 5,6 millió tonna kőzetet termeltek ki. Ez a mennyiség 1994-re a CFC-gázok használatának korlátozása miatt 3,6 millió tonnára csökkent. A termelés azóta növekszik: 2003-ban 4,5 millió tonna fluoritot bányásztak ki 550 millió dollár értékben. 2011-ben a fluorkémiai termékek kereskedelme elérte a 15 milliárd dollárt, az előrejelzések a 2016–18-as időszakra 3,5–5,9 millió tonnás termelést jósolnak legalább 20 milliárd dollár értékben.[159][160][161][162][163] A kibányászott fluoritot lebegtetéssel két különböző tisztaságú csoportra választják: a 60–85% tisztaságú fluoritot elsősorban a vaskohászatban használják fel, míg a 97% feletti tisztaságúból hidrogén-fluoridot gyártanak.[53][159][164]
Legalább 17 000 tonna elemi fluort állítanak elő minden évben. Ára urán- vagy kén-hexafluorid formában mindössze 5–8 dollár (körülbelül 2000 forint) kilogrammonként, az elemi fluor árát viszont szállítási is kezelési nehézségei megtöbbszörözik, ezért többnyire a felhasználás helyén állítják elő.[165]
A fluorgáz legfőbb alkalmazója az atomipar, évente mintegy 7000 tonnát használnak fel belőle urándúsításra. A természetes urán kis mennyiségben tartalmaz láncreakcióra képes 235U izotópot és nagy mennyiségben 238U izotópot. Az izotópok szétválasztása elég nehéz művelet, mivel legtöbb tulajdonságuk megegyezik. Az urán-dioxidból és hidrogén-fluoridból először urán-tetrafluoridot gyártanak, majd ezt fluorgázzal alakítják urán-hexafluoriddá.[165] A fluor monoizotópos elem, tehát az UF6-molekulák közti bármilyen tömegkülönbséget a nehezebb uránizotópok jelenléte okozza. A tömegkülönbség lehetővé teszi, hogy a különböző uránizotópokat tartalmazó molekulákat fizikai módszerekkel, például gázdiffúziós eljárással, vagy centrifugálással szétválasszák.[16][53] Évente hozzávetőlegesen 6000 tonna fluort használnak fel a dielektrikum kén-hexafluorid gyártásához, melyet magasfeszültségű transzformátorokban és biztosítékokban használnak a veszélyes poliklórozott bifenilek helyett.[166] Számos fluorvegyületet alkalmaznak az elektrotechnikában: rénium- és volfrám-hexafluoridot a kémiai gázfázisú rétegleválasztásban, tetrafluormetánt a plazmavágásnál[167][168][169] és nitrogén-trifluoridot a felszerelések tisztításánál.[53] A fluort szerves szintézisekben is használják, de nagy reaktivitása miatt először többnyire ClF3-dá, BrF3-dá, vagy IF5-dá alakítják. Ezek együttes használata beállított fluorozást tesz lehetővé.
Szervetlen fluoridok
A fluoritot acélokhoz és vasötvözetekhez adják körülbelül 3 kg/tonna mennyiségben, hogy csökkentsék az olvadáspontját és viszkozitását.[53][170] Amellett, hogy adalékként alkalmazzák zománcokban vagy hegesztőpálca-borításban, a fluorit legnagyobb részét kénsavval reagáltatják, hogy hidrogén-fluoridot kapjanak, amit fémek pácolásánál, üvegmaratásnál, vagy krakkolásnál használnak.[53] Az előállított hidrogén-fluorid egyharmadát kriolit és alumínium-trifluorid előállítására használják, mindkettőnek fontos szerepe van az alumíniumgyártásban. Minden tonna alumínium előállításához szükséges hozzávetőlegesen 23 kilogramm folyósítóanyag.[53][171] A második legtöbb HF-ot a fluoroszilikátok igénylik, például a nátrium-fluoroszilikát, melyet az ivóvíz fluorozására, vagy mosodai szennyvíz kezelésére valamint köztitermékként használják kriolit és szilícium tetrafluorid előállításánál.[172] Más iparilag fontos szervetlen fluoridok a kobalt, a nikkel és az ammónia fluoridjai.[53][91][173]
Szerves fluoridok
A szerves fluorvegyületek – leginkább hűtőgázok és fluorpolimerek – gyártása igényli a kibányászott fluorit 20, és az összes előállított folysav 40 százalékát.[53][174] Kevésbé fontos felhasználási terület a felületaktív anyagoké, de évi több mint egymilliárd dolláros bevételt hoz.[175] A közvetlen fluor-szénhidrogén reakciót elkerülendő, az ipari fluorokarbon gyártás többnyire halogéncserén keresztül történik, például a Swarts-fluorozás során a klórozott szénhidrogénben lévő klórt hidrogén-fluorid segítségével, katalizátor jelenlétében szubsztituálják fluorral. Egyéb közvetett módszereket is alkalmaznak, például az elektrokémiai fluorozás, melynek során a szénhidrogéneket hidrogén-fluoridban elektrolizálják, vagy a Fowler-eljárás, ahol szilárd fluor-hordozóval, többek között kobalt-trifluoriddal kezelik őket.[82][176]
Hűtőközegek
A halogénezett hűtőközegeket (nem hivatalosan Freonok vagy gyakran hibásan CFC-k) az R-számuk alapján azonosítják, ami a bennük jelenlévő fluor, klór, szén és hidrogén mennyiségét határozza meg.[53][177] A klórozott-fluorozott szénhidrogének (klorofluorokarbonok, CFC-k), mint a fluor-triklórmetán (Freon-11, R-11), a difluor-diklórmetán (Freon-12) és az 1,2-diklór-tetrafluoretán (Freon-114) egykor vezető szerepet töltöttek be a szerves fluorvegyületek közt, felhasználták őket légkondicionáló rendszerekben, hajtógázként és oldószerként. Termelésük az 1980-as években érte el a csúcsot, azóta a széles körű nemzetközi tiltás miatt termelésük nem éri el a maximum egytizedét sem.[53] A CFC-k helyettesítésére a részlegesen klórozott-fluorozott szénhidrogéneket (hidroklorofluorokarbonok, HCFC-k) és a részlegesen fluorozott szénhidrogéneket (hidrofluorokarbonok, HFC) szánták; szintézisük a szerves vegyiparban elhasznált fluor több mint 90%-át igényli. Fontosabb HCFC-k a difluor-klórmetán és az 1,1-diklór-1-fluoretán, a HFC-közül megemlíthető az 1,1,1,2-tetrafluoretán (HFC-134),[53] valamint a 2,3,3,3-tetrafluorpropán, amely annak köszönhetően került előtérbe, hogy globális felmelegedési potenciálja kevesebb mint 1%-a a HFC-134-nek.[178]
Polimerek
2006-ban és 2007-ben hozzávetőlegesen 180 000 tonna fluorpolimert állítottak elő, évente több mint 3,5 milliárd dollár bevételt hozva.[179] 2011-ben a globális piacot mintegy hatmilliárd dollárra becsülték, mely az előrejelzések szerint évi 6,5%-kal fog növekedni 2016-ig.[180] A termelés 60–80%-át a poli(tetrafluoretilén) teszi ki, melyet a DuPont márkaneve után teflonnak is neveznek.[179] Legfőbb felhasználási területe az elektromos szigetelés, mivel kitűnő dielektrikum. Felhasználják a vegyiparban is korrózióálló berendezések, például csővezetékek, tömítések gyártásánál, emellett üvegszálas szövetek borításánál és tapadásmentes edényeknél.[181] Más fluorpolimerek, például a fluorozott etilén-propilén (FEP) hasonló tulajdonságokkal bírnak, mint a PTFE, és helyettesíthetik azt; könnyebben formázhatóak, de drágábbak, és kisebb a termikus stabilitásuk. Fluorpolimereket használnak a napelemcellák borításánál is.[181][182]
A kémiailag ellenálló (ugyanakkor drága) fluorozott ionomereket elektrokémiai cellák membránjaként használják fel, melyek közül az egyik legjelentősebb a Nafion. Az 1960-as években kifejlesztett anyagot először űrhajókban alkalmazott tüzelőanyag-cellák alapanyagaként kezdték el használni, később pedig helyettesítette a higanyalapú klóralkáli-cellákat. A közelmúltban a tüzelőanyag-cellákban való alkalmazás ismét előtérbe került, köszönhetően az autókba protoncsere-membrános üzemanyag-cellák építésére irányuló törekvéseknek.[183][184][185]
A fluorkaucsukból (ilyenek például a Viton kaucsukok) olajoknak és más vegyszereknek hidegben és melegben egyaránt ellenálló gumik gyárthatók; főként tömítések készülnek ebből, pl. O-gyűrűk.[181]
Egészségügyi
Fogápolás
A huszadik század közepétől kezdődően számos populációs vizsgálat született, melyek kimutatták, hogy a helyi alkalmazású fluorid csökkenti a fogszuvasodást. Ezt kezdetben a fogzománcot alkotó hidroxilapatit az ellenállóbb fluorapatittá való átalakulásának tulajdonították, de a fluorozás előtti fogakon végzett vizsgálatok cáfolták ezt a feltevést, és a jelenlegi elméletek szerint a fluor elősegíti a zománcképződést kezdeti stádiumban lévő fogszuvasodásnál.[186] Az 1940-es években kezdődött meg az ivóvíz mesterséges fluoridozása, miután kimutatták, hogy a magas természetes fluoridtartalmú vizet fogyasztó gyerekeknél jelentősen kisebb gyakorisággal fordul elő a fogszuvasodás.[187] Ma a világ népességének hat százaléka jut mesterségesen fluoridozott vízhez, köztük az amerikaiak kétharmada.[188][189] Magyarországon nem adnak fluoridot a vezetékes vízhez. Szakirodalmi értékelések 2000 és 2007 között az ivóvíz fluoridozásához kapcsolták a gyerekkori fogromlás jelentős csökkenését.[190] Ugyanakkor a nagy mennyiségben fogyasztott fluorid egyik okozója lehet a fluorózisnak, amiért 40%-ban, közvetlenül vagy közvetetten a vezetékes víz fluorozása felelős.[191] Egyes tanulmányok szerint továbbá a magas fluoridtartalmú víz fogyasztása káros hatással lehet a gyermekek szellemi fejlődésére. A tanulmány által vizsgált fluorban gazdag vizű területen élő gyerekek IQ-ja jelentősen alacsonyabb volt, mint az alacsonyabb fluoridtartalmú területen élőké.[192][193] A nátrium-fluorid és a nátrium-monofluorofoszfát gyakran megtalálható fogkrémekben. A fluoridtartalmú fogkrémek először 1955-ben jelentek meg az Egyesült Államokban, és manapság minden fejlett országban jelen vannak.[194][195]
Gyógyászat
A modern gyógyszerek mintegy húsz százaléka tartalmaz fluort.[196] Ezek egyike a koleszterin-csökkentő atorvasztatin, ami több bevételt hozott, mint akármelyik másik gyógyszer, amíg 2011-ben generikussá vált.[197] Az asztma elleni Seretide két hatóanyaga közül az egyik – a flutikazon – fluortartalmú.[198] Sok gyógyszert azért fluoroznak, mert a szén-fluor kötés nagy stabilitása miatt ez késlelteti az inaktivációt és meghosszabítja az adagolási periódust.[199] A fluorozás továbbá megnöveli a vegyület zsíroldékonyságát, mivel a szén-fluor kötés erősebben hidrofób a szén-hidrogén kötésnél, és ez segíti a sejtmembránon való átjutást.[198]
A triciklikus antidepresszánsoknak és más, az 1980-as évek előtt használt antidepresszánsoknak számos mellékhatásuk volt, a szerotoninon kívüli neurotranszmitterekre való nem-szelektív hatása miatt; a fluorozott fluoxetin volt az első, ami ezt a problémát kiküszöbölte. Számos jelenlegi antidepresszáns részesül még ebben az eljárásban, köztük a szelektív szerotonin visszavétel-gátló citalopram, ennek egy izomerje, az eszcitalopram, a fluvoxamin és a paroxetin.[200][201] A kinolonok mesterséges széles spektrumú antibiotikumok, melyeket gyakran fluoroznak, hogy fokozzák a hatásukat. Ezek közé tartozik a ciprofloxacin és a levofloxacin.[202][203][204][205] A fluort szteroidokban is felhasználják:[206] a fludrokortizon egy vérnyomásnövelő mineralokortikoid, a triamkinolon és a dexametanzon pedig erős glükokortikoid.[207] Az inhalációs altatószerek többsége erősen fluorozott, például a fluorozott éterek, mint a szevoflurán és a dezflurán, melyek alig oldódnak a vérben, gyorsabb ébredést téve lehetővé.[208][209]
PET vizsgálat
A fluor-18-at gyakran alkalmazzák mint radioaktív nyomjelzőt a pozitronemissziós tomográfiai vizsgálatokban, mivel kétórás felezési ideje elég hosszú, hogy lehetővé tegye a gyártási helyéről a képalkotó központba való szállítását.[210] A leggyakoribb nyomjelző a fluordezoxiglükóz,[210] amit intravénás injekcióval jutnak a szervezetbe, majd ott a glükózt igénylő szövetek veszik fel, mint az agy és a legtöbb rosszindulatú tumor.[211]
Oxigénszállítás
A folyékony fluorokarbonok nagy mennyiségű oxigént és szén-dioxidot képesek megkötni, jelentősen többet, mint a vér, ezért felmerült mesterséges vérként, vagy légfolyadékként való használatuk.[212] Mivel a fluorokarbonok normális esetben nem keverednek a vízzel, ezért emulzió formájában lehet őket vérként felhasználni.[213][214]
Biztonság
Az elemi fluor, a fluor-hidrogén és a vízben oldódó szervetlen fluoridok, nagyon mérgezőek és maró hatásúak, ezért nagy elővigyázattal kell kezelni és kerülni, hogy a bőrre vagy a szembe kerüljenek. Mivel a fluor nagyon reaktív, és szerves anyaggal érintkezve abból hidrogént von el, hidrogén-fluorid (HF) keletkezik, ez az első lépés a bőr roncsolásában. A HF, ellentétben más erős savakkal, a bőrfelületben egyre mélyebbre hatol, ez a második és veszélyesebb lépés a bőr roncsolásában. Ezt még fokozza az is, hogy az idegvégződések is károsodnak, és az első fázisokban az égés fájdalommentes. A hidrogén-fluorid reagálhat a csont kalciumjával, és idült csontkárosodást okoz. Ennél veszélyesebb a szervezetben lévő kalcium megkötése, ami szívritmuszavart okoz és szívmegállás következhet be. Ha a HF a bőrfelület 2,5%-át érinti (ez kb. 23 cm2), és nem mossák le azonnal bő vízzel, a sérült nyílt, nehezen gyógyuló sebeket szerez, ha még sikerül is túlélnie a balesetet.[215]
Biológiai szerep
A fluor nem esszenciális elem sem az emberek, sem más emlősök számára. Nyomelemként fontos szerepet tölt be a csontképződésben, felelős a csontok és a fogzománc keménységéért. Mivel a fluor nyomnyi mennyiségben számos természetes forrásban megtalálható (például teában, kávéban, vagy tengeri halakban), a fluorhiány lehetősége csak mesterséges étrendeknél releváns.[216][217] Természetes eredetű szerves fluorvegyületek megtalálhatók mikroorganizmusokban és növényekben,[56] de állatokban nem.[218] Ezek közül leggyakoribb a nátrium-fluoracetát, melyet legalább 40 növényfaj használ kártevők elleni védekezésre Afrikában, Ausztráliában és Brazíliában.[219] Más ilyen vegyületek például a terminálisan fluorozott zsírsavak, a fluoraceton vagy a 2-fluorcitrát.[218] A fluoratomot a szénhez kapcsoló enzimet 2002-ben fedezték fel baktériumokban.[220]
Kapcsolódó szócikkek
Megjegyzések
- ↑ Basilius Valentinus feltehetőleg már a késő 15. században leírta a fluoritot, de mivel jegyzeteit csak 200 évvel később fedezték fel, e munka valóságtartalma kétséges.[61][62][63]
- ↑ Davy, Gay-Lussac, Thénard, és az ír Thomas és George Knox is megsérült. A belga Paulin Louyet és a francia Jérôme Nicklès kémikus meghalt. Moissan szintén megtapasztalta a súlyos hidrogén-fluorid-mérgezést.[67][77]
- ↑ A hivatalos indoklás szerint Moissan „a fluor izolálásáért és a róla elnevezett elektromos kemence felfedezéséért” kapta meg a díjat.
- ↑ A ZrF4 olvadáspontja 932 °C,[101] A HfF4 968 °C-on szublimál,[98] az UF4 pedig 1036 °C-on olvad[102]
- ↑ Ez a tizenhárom fém a molibdén, a technécium, a ruténium, a ródium, a volfrám, a rénium, az ozmium, az iridium, a platina, a polónium, az urán, a neptúnium és a plutónium.
Jegyzetek
- ↑ Current Table of Standard Atomic Weights in Order of Atomic Number. Commission on Isotopic Abundances and Atomic Weights – Commission II.I of the International Union of Pure and Applied Chemistry, 2013. (Hozzáférés: 2013. október 13.)
- ↑ (1999) „On the magnetic susceptibility of fluorine”. Journal of Physical Chemistry A 103 (15), 2861–2866. o. DOI:10.1021/jp9844720.
- ↑ Szõkefalvi-Nagy Zoltán; Szabadváry Ferenc: A magyar kémiai szaknyelv kialakulása. A kémia története Magyarországon. Akadémiai Kiadó, 1972. (Hozzáférés: 2010. december 3.)
- ↑ Ringnens, Vivi (1989). „Origin of the Names of Chemical Elements”. Journal of Chemical Education 66 (9), 731–736. o.
- ↑ a b Jaccaud et al. 2000, 381. o.
- ↑ Dean 1999, 564. o.
- ↑ Lide 2004, 10.137–10.138. o.
- ↑ Moore, Stanitski & Jurs 2010, p. 156.
- ↑ Cordero et al. 2008.
- ↑ Pyykkö & Atsumi 2009.
- ↑ Greenwood & Earnshaw 1998, 800. o.
- ↑ Greenwood & Earnshaw 1998, 801. o.
- ↑ Veszprémi, Tamás. Általános kémia, 2. kiadás, Budapest: Akadémiai Kiadó, 425. o. (2015). ISBN 9789630596183
- ↑ a b Greenwood & Earnshaw 1998, 804. o.
- ↑ Macomber 1996, p. 230
- ↑ a b c Jaccaud et al. 2000, 382. o.
- ↑ Nelson 1947.
- ↑ Lidin, Molochko & Andreeva 2000, 442–455. o.
- ↑ a b Wiberg, Wiberg & Holleman 2001, 404. o.
- ↑ Patnaik 2007, 472. o.
- ↑ Aigueperse et al. 2000, 400. o.
- ↑ Greenwood & Earnshaw 1998, 76, 804. o.
- ↑ Kuriakose & Margrave 1965.
- ↑ Hasegawa et al. 2007.
- ↑ Lagow 1970, pp. 64–78.
- ↑ Lidin, Molochko & Andreeva 2000, 252. o.
- ↑ Tanner Industries 2011.
- ↑ Morrow, Perry & Cohen 1959.
- ↑ Emeléus & Sharpe 1974, p. 111.
- ↑ Wiberg, Wiberg & Holleman 2001, 457. o.
- ↑ Brantley 1949, p. 26.
- ↑ Jaccaud et al. 2000, 383. o.
- ↑ Pitzer 1975.
- ↑ a b Khriachtchev et al. 2000.
- ↑ Burdon, Emson & Edwards 1987.
- ↑ Lide 2004, 4.12. o.
- ↑ a b Dean 1999, 523. o.
- ↑ a b Young 1975, 10. o.
- ↑ a b Barrett, Meyer & Wasserman 1967.
- ↑ National Nuclear Data Center NuDat 2.1, Fluorine-19.
- ↑ Meusinger, Chippendale & Fairhurst 2012, pp. 752, 754.
- ↑ a b National Nuclear Data Center NuDat 2.1.
- ↑ NUBASE 2003, p. 29.
- ↑ Cameron 1973.
- ↑ a b c Croswell 2003.
- ↑ Clayton 2003, pp. 101–104.
- ↑ Renda et al. 2004.
- ↑ a b Jaccaud et al. 2000, 384. o.
- ↑ Schulze-Makuch & Irwin 2008, p. 121.
- ↑ Haxel, Hedrick & Orris 2005.
- ↑ a b c d Greenwood & Earnshaw 1998, 795. o.
- ↑ a b c d e f g h i j k l m Villalba, Ayres & Schroder 2008.
- ↑ Kelly & Miller 2005.
- ↑ Lusty et al. 2008.
- ↑ a b Gribble 2002.
- ↑ Richter, Hahn & Fuchs 2001, p. 3.
- ↑ a b Schmedt, Mangstl & Kraus 2012.
- ↑ Greenwood Earnshaw 1998, 790. o.
- ↑ Senning 2007, 149. o.
- ↑ Stillman 1912.
- ↑ Principe 2012, 140, 145. o.
- ↑ Agricola, Hoover, Hoover 1912, lábjegyzetek és kommentárok, 38, 409, 430, 461, 608 o.
- ↑ Norwood-Fohs 1907, 52. o.
- ↑ Greenwood Earnshaw 1998, 109. o.
- ↑ Agricola, Hoover, Hoover 1912, előnézet, 380–381 o.
- ↑ a b c d e Weeks 1932.
- ↑ Asimov, Isaac. The noble gases. Basic Books, 162. o. (1966). ISBN 978-0-465-05129-8
- ↑ Partington 1923.
- ↑ Marggraf 1770.
- ↑ a b Kirsch 2004, 3-10. o.
- ↑ Scheele 1771.
- ↑ Ampère 1816.
- ↑ Davy 1813, 278. o.
- ↑ Banks 1986, 11. o.
- ↑ Storer 1864, 278-280. o.
- ↑ a b c d Toon 2001.
- ↑ a b Asimov 1966, 162. o.
- ↑ Greenwood Earnshaw 1998, 789–791. o.
- ↑ Moissan 1886.
- ↑ Viel-Goldwhite 1993, 35. o.
- ↑ a b c d Okazoe 2009.
- ↑ a b Hounshell & Smith 1988, 156–157. o.
- ↑ DuPont 2013a.
- ↑ Meyer 1977, p. 111.
- ↑ Kirsch 2004, pp. 60–66.
- ↑ Riedel & Kaupp 2009.
- ↑ Harbison 2002.
- ↑ Edwards 1994, p. 515.
- ↑ Katakuse et al. 1999, p. 267.
- ↑ a b Aigueperse et al. 2000, 420–422. o.
- ↑ Storer 1864, pp. 278–280.
- ↑ Walsh 2009, pp. 99–102, 118–119.
- ↑ Emeléus & Sharpe 1983, 89–97. o.
- ↑ Babel & Tressaud 1985, pp. 91–96.
- ↑ Einstein et al. 1967.
- ↑ Brown et al. 2005, p. 144.
- ↑ a b Perry 2011, p. 193.
- ↑ Kern et al. 1994.
- ↑ Lide 2004, 4.60, 4.76, 4.92, 4.96. o.
- ↑ Lide 2004, 4.96. o.
- ↑ Lide 2004, 4.92. o.
- ↑ Greenwood & Earnshaw 1998, 964. o.
- ↑ Becker & Müller 1990.
- ↑ Greenwood & Earnshaw 1998, 990. o.
- ↑ Lide 2004, 4.72, 4.91, 4.93. o.
- ↑ a b Greenwood & Earnshaw 1998, 561–563. o.
- ↑ Emeléus & Sharpe 1983, 256–277. o.
- ↑ Mackay, Mackay & Henderson 2002, 355–356. o.
- ↑ Greenwood & Earnshaw 1998, (various pages, by metal in respective chapters).
- ↑ Lide 2004, 4.71, 4.78, 4.92. o.
- ↑ Drews et al. 2006.
- ↑ Greenwood & Earnshaw 1998, 819. o.
- ↑ Bartlett 1962.
- ↑ Pauling 1960, pp. 454–464.
- ↑ Atkins & Jones 2007, pp. 184–185.
- ↑ Emsley 1981.
- ↑ Greenwood & Earnshaw 1998, 812–816. o.
- ↑ Wiberg, Wiberg & Holleman 2001, 425. o.
- ↑ Chambers & Holliday 1975, pp. 328–329.
- ↑ Air Products and Chemicals 2004, 1. o.
- ↑ Noury, Silvi & Gillespie 2002.
- ↑ Chang & Goldsby 2013, p. 706.
- ↑ Ellis 2001, p. 69.
- ↑ Aigueperse et al. 2000, 423. o.
- ↑ Wiberg, Wiberg & Holleman 2001, 897. o.
- ↑ Raghavan 1998, pp. 164–165.
- ↑ Godfrey et al. 1998, p. 98.
- ↑ Aigueperse et al. 2000, 432. o.
- ↑ Murthy, Mehdi Ali & Ashok 1995, pp. 180–182, 206–208.
- ↑ Greenwood & Earnshaw 1998, 638–640, 683–689, 767–778. o.
- ↑ Wiberg, Wiberg & Holleman 2001, 435–436. o.
- ↑ Wiberg, Wiberg & Holleman 2001, 392–393. o.
- ↑ Wiberg, Wiberg & Holleman 2001, 395–397, 400. o.
- ↑ Lewars 2008, 68. o.
- ↑ Pitzer 1993, p. 111.
- ↑ Lewars 2008, 67. o.
- ↑ a b Bihary, Chaban & Gerber 2002.
- ↑ Lewars 2008, 71. o.
- ↑ O'Hagan 2008.
- ↑ Siegemund et al. 2005, 444. o.
- ↑ Siegemund et al. 2005, 451–452. o.
- ↑ Salager 2002, p. 45.
- ↑ Carlson & Scmiegel 2005, 3. o.
- ↑ Carlson & Scmiegel 2005, 3–4. o.
- ↑ Rhoades 2008, p. 2.
- ↑ Okada et al. 1998.
- ↑ Carlson & Scmiegel 2005, 4. o.
- ↑ Czvikovszky Tibor, Gaál János, Nagy Péter. A polimertechnika alapjai. Műegyetemi Kiadó (2000). ISBN 9789634206217
- ↑ Jaccaud et al. 2000, 386. o.
- ↑ Jaccaud et al. 2000, 384–285. o.
- ↑ Greenwood & Earnshaw 1998, 796–797. o.
- ↑ http://www.essentialchemicalindustry.org/chemicals/fluorine.html
- ↑ a b Greenwood & Earnshaw 1998.
- ↑ Jaccaud et al. 2000, 384–385. o.
- ↑ a b Jaccaud et al. 2000, 390–391. o.
- ↑ Shriver & Atkins 2010, p. 427.
- ↑ a b Christe Research Group n.d.
- ↑ a b Kirsch 2004, pp. 3–10.
- ↑ Miller 2003b.
- ↑ PRWeb 2012.
- ↑ Bombourg 2012.
- ↑ TMR 2013.
- ↑ Fulton & Miller 2006, p. 471.
- ↑ a b Jaccaud et al. 2000, 392. o.
- ↑ Aigueperse et al. 2000, 430. o.
- ↑ Jaccaud et al. 2000, 391–392. o.
- ↑ El-Kareh 1994, p. 317.
- ↑ Arana et al. 2007.
- ↑ Miller 2003a.
- ↑ Energetics, Inc. 1997, pp. 41, 50.
- ↑ Aigueperse et al. 2000, 428. o.
- ↑ Willey 2007, p. 113.
- ↑ PRWeb 2010.
- ↑ Renner 2006.
- ↑ Green et al. 1994, pp. 91–93.
- ↑ DuPont 2013b.
- ↑ Walter 2014.
- ↑ a b Buznik 2009.
- ↑ PRWeb 2013.
- ↑ a b c Martin 2007, pp. 187–194.
- ↑ DeBergalis 2004.
- ↑ Grot 2011, pp. 1–10.
- ↑ Ramkumar 2012, p. 567.
- ↑ Burney 1999, p. 111.
- ↑ Pizzo 2007.
- ↑ CDC 2001.
- ↑ Ripa 1993.
- ↑ Cheng, Chalmers & Sheldon 2007.
- ↑ NHMRC 2007; see Yeung 2008 for a summary.
- ↑ United States Environmental Protection Agency (2010). „Comment-Response Summary Report for the Peer Review of the Fluoride: Dose-Response Analysis for Non-Cancer Effects Document”. Laikus összefoglaló – EPA (2010. november 3.)
- ↑ „Impact of fluoride on neurological development in children”, 2012. július 25. (Hozzáférés: 2016. május 16.)
- ↑ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491930/
- ↑ Baelum, Sheiham & Burt 2008, p. 518.
- ↑ Cracher 2012, p. 12.
- ↑ Emsley 2011, p. 178.
- ↑ Johnson 2011.
- ↑ a b Swinson 2005.
- ↑ Hagmann 2008.
- ↑ Mitchell 2004, pp. 37–39.
- ↑ Preskorn 1996, chap. 2.
- ↑ Werner et al. 2011.
- ↑ Brody 2012.
- ↑ Nelson et al. 2007.
- ↑ King, Malone & Lilley 2000.
- ↑ Parente 2001, p. 40.
- ↑ Raj & Erdine 2012, p. 58.
- ↑ Filler & Saha 2009.
- ↑ Bégué & Bonnet-Delpon 2008, pp. 335–336.
- ↑ a b Schmitz et al. 2000.
- ↑ Bustamante & Pedersen 1977.
- ↑ Gabriel et al. 1996.
- ↑ Sarkar 2008.
- ↑ Schimmeyer 2002.
- ↑ Kevi.hu a halogénekről
- ↑ Nielsen 2009.
- ↑ Olivares & Uauy 2004.
- ↑ a b Murphy, Schaffrath & O'Hagan 2003
- ↑ Proudfoot, Bradberry & Vale 2006.
- ↑ O'Hagan et al. 2002.
Források
- ↑ Agricola, Hoover, Hoover 1912 De Re Metallica. London: The Mining Magazine (1912. november 3.)
- ↑ Aigueperse et al. 2000 (2000) „Fluorine Compounds, Inorganic”, Weinheim 15, 397–441. o, Kiadó: Wiley-VCH. DOI:10.1002/14356007.
- ↑ Air Products and Chemicals 2004 Air Products and Chemicals: Safetygram #39 Chlorine Trifluoride. Air Products and Chemicals, 2004 (Hozzáférés: 2014. február 16.)
- ↑ Ampère 1816 Ampère, André-Marie (1816. november 3.). „Suite d'une classification naturelle pour les corps simples” (french nyelven). Annales de chimie et de physique 2, 1–5. o.
- ↑ Arana et al. 2007 (2007) „Isotropic Etching of Silicon in Fluorine Gas for MEMS Micromachining”. Journal of Micromechanics and Microengineering 17 (2), 384. o. DOI:10.1088/0960-1317/17/2/026.
- ↑ Asimov 1966 Asimov, Isaac. The Noble Gases. New York: Basic Books (1966. november 3.). ISBN 978-0-465-05129-8
- ↑ Atkins Jones 2007 Chemical Principles: The Quest for Insight, 4th, New York: W. H. Freeman (2007. november 3.). ISBN 978-1-4292-0965-6
- ↑ Babel Tressaud 1985 Crystal Chemistry of Fluorides, Inorganic Solid Fluorides: Chemistry And Physics. Orlando: Academic Press, 78–203. o. (1985. november 3.). ISBN 978-0-12-412490-5
- ↑ Baelum Sheiham Burt Caries Control for Populations, Dental Caries: The Disease and Its Clinical Management, 2nd, Oxford: Blackwell Munksgaard, 505–526. o. (2008. november 3.). ISBN 978-1-4051-3889-5
- ↑ Banks 1986 (1986. november 3.) „Journal of Fluorine Chemistry” 33 (1–4), 3–26. o. DOI:10.1016/S0022-1139(00)85269-0.
- ↑ Barrett Meyer Wasserman (1967) „Argon—Fluorine Phase Diagram”. The Journal of Chemical Physics 47 (2), 740–743. o. DOI:10.1063/1.1711946.
- ↑ Bartlett 1962 (1962) „Xenon Hexafluoroplatinate (V) Xe+[PtF6]−”. Proceedings of the Chemical Society (6), 218. o. DOI:10.1039/PS9620000197.
- ↑ Becker Müller 1990 (1990) „Vanadium Tetrafluoride”. Angewandte Chemie International Edition in English 29 (4), 406. o. DOI:10.1002/anie.199004061.
- ↑ Bégué Bonnet-Delpon 2008 Bioorganic and Medicinal Chemistry of Fluorine. Hoboken: John Wiley & Sons (2008. november 3.). ISBN 978-0-470-27830-7
- ↑ Bihary Chaban Gerber (2002) „Stability of a Chemically Bound Helium Compound in High-pressure Solid Helium”. The Journal of Chemical Physics 117 (11), 5105–5108. o. DOI:10.1063/1.1506150.
- ↑ Bombourg 2012 Bombourg, Nicolas: World Fluorochemicals Market, Freedonia. Reporterlinker, 2012. július 4. (Hozzáférés: 2013. október 20.)
- ↑ Brantley 1949 Brantley, L. R. (1949. november 3.). „Fluorine”. Pacific Rockets: Journal of the Pacific Rocket Society, South Pasadena 3 (1), 11–18. o, Kiadó: Sawyer Publishing/Pacific Rocket Society Historical Library.
- ↑ Brody 2012 Brody, Jane E.: Popular Antibiotics May Carry Serious Side Effects. The New York Times Well Blog, 2012. szeptember 10. (Hozzáférés: 2013. október 18.)
- ↑ Brown et al. 2005 Chemical Thermodynamics of Zirconium. Amsterdam: Elsevier B. V. (2005. november 3.). ISBN 978-0-444-51803-3
- ↑ Burdon Emson Edwards (1987) „Is Fluorine Gas Really Yellow?”. Journal of Fluorine Chemistry 34 (3–4), 471. o. DOI:10.1016/S0022-1139(00)85188-X.
- ↑ Burney 1999 Burney, H.. Past, Present and Future of the Chlor-Alkali Industry, Chlor-Alkali and Chlorate Technology: R. B. MacMullin Memorial Symposium. Pennington: The Electrochemical Society, 105–126. o. (1999. november 3.). ISBN 1-56677-244-3
- ↑ Bustamante Pedersen 1977 (1977) „High Aerobic Glycolysis of Rat Hepatoma Cells in Culture: Role of Mitochondrial Hexokinase”. Proceedings of the National Academy of Sciences 74 (9), 3735–3739. o. DOI:10.1073/pnas.74.9.3735. PMID 198801. PMC 431708.
- ↑ Buznik 2009 (2009) „Fluoropolymer Chemistry in Russia: Current Situation and Prospects”. Russian Journal of General Chemistry 79 (3), 520–526. o. DOI:10.1134/S1070363209030335.
- ↑ Cameron 1973 Cameron, A. G. W. (1973). „Abundance of the Elements in the Solar System”. Space Science Review 15, 121–146. o. DOI:10.1007/BF00172440.
- ↑ Carlson Scmiegel 2005 Fluoropolymers, Organic, Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 495–533. o.. DOI: 10.1002/14356007.a11_393 (2000). ISBN 3527306730
- ↑ CDC 2001 Centers for Disease Control and Prevention (2001. november 3.). „Recommendations for Using Fluoride to Prevent and Control Dental Caries in the United States”. MMWR Recommendations and Reports 50 (RR–14), 1–42. o. PMID 11521913. (Hozzáférés: 2013. október 14.)
- ↑ Chambers Holliday 1975 Modern Inorganic Chemistry: An Intermediate Text. London: Butterworth & Co. (1975. november 3.). ISBN 978-0-408-70663-6
- ↑ Chang Goldsby 2013 Chemistry, 11th, New York: McGraw-Hill (2013. november 3.). ISBN 978-0-07-131787-0
- ↑ Cheng Chalmers Sheldon (2007) „Adding Fluoride to Water Supplies”. BMJ 335 (7622), 699–702. o. [2016. március 3-i dátummal az eredetiből archiválva]. DOI:10.1136/bmj.39318.562951.BE. PMID 17916854. PMC 2001050. (Hozzáférés: 2017. április 8.)
- ↑ Christe Research Group n.d. Christe Research Group: Chemical Synthesis of Elemental Fluorine:, 2024. november 3. [2016. március 4-i dátummal az eredetiből archiválva]. (Hozzáférés: 2013. január 12.)
- ↑ Clayton 2003 Clayton, Donald. Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. New York: Cambridge University Press (2003. november 3.). ISBN 978-0-521-82381-4
- ↑ Cordero et al. 2008 (2008. november 3.) „Covalent Radii Revisited”. Dalton Transactions (21), 2832–2838. o. DOI:10.1039/b801115j.
- ↑ Cracher 2012 Cracher, Connie M.: Current Concepts in Preventive Dentistry. dentalcare.com, 2012 [2013. október 14-i dátummal az eredetiből archiválva]. (Hozzáférés: 2013. október 14.)
- ↑ Croswell 2003 Croswell, Ken (2003. szeptember 1.). „Fluorine: An element–ary Mystery”. Sky and Telescope. (Hozzáférés: 2013. október 17.)
- ↑ Davy 1813 Davy, Humphry (1813. november 3.). „Some experiments and observations on the substances produced in different chemical processes on fluor spar”. Philosophical Transactions of the Royal Society 103, 263–279. o. DOI:10.1098/rstl.1813.0034.
- ↑ Dean 1999 Dean, John A.. Lange's Handbook of Chemistry, 15th, New York: McGraw-Hill (1999. november 3.). ISBN 0-07-016190-9
- ↑ DeBergalis 2004 (2004) „Fluoropolymer films in the photovoltaic industry”. Journal of Fluorine Chemistry 125 (8), 1255. o. DOI:10.1016/j.jfluchem.2004.05.013.
- ↑ Drews et al. 2006 (2006) „Solid State Molecular Structures of Transition Metal Hexafluorides”. Inorganic Chemistry 45 (9), 3782–3788. o. DOI:10.1021/ic052029f. PMID 16634614.
- ↑ DuPont 2013a DuPont: Freon, 2013a. (Hozzáférés: 2013. október 17.)
- ↑ DuPont 2013b DuPont: Understanding the Refrigerant 'R' Nomenclature, 2013b. (Hozzáférés: 2013. október 17.)
- ↑ Edwards 1994 Edwards, Philip Neil. Use of Fluorine in Chemotherapy, Organofluorine Chemistry: Principles and Commercial Applications. New York: Plenum Press, 501–542. o. (1994. november 3.). ISBN 978-0-306-44610-8* ↑ Katakuse et al. 1999 SIMS Experiment, Mesoscopic Materials and Clusters: Their Physical and Chemical Properties. Tokyo: Kodansha, 259–273. o. (1999. november 3.). ISBN 4-06-208635-2
- ↑ Einstein et al. 1967 (1967. november 3.) „The Crystal Structure of Gold Trifluoride”. Journal of the Chemical Society A: Inorganic, Physical, Theoretical 4, 478–482. o. DOI:10.1039/J19670000478.
- ↑ El-Kareh 1994 El-Kareh, Badih. Fundamentals of Semiconductor Processing Technology. Norwell and Dordrecht: Kluwer Academic Publishers (1994. november 3.). ISBN 978-0-7923-9534-8
- ↑ Ellis 2001 Ellis, Brian. Scientific Essentialism. Cambridge: Cambridge University Press (2001. november 3.). ISBN 978-0-521-80094-5
- ↑ Emeléus Sharpe 1974 Advances in Inorganic Chemistry and Radiochemistry. New York: Academic Press (1974. november 3.). ISBN 978-0-08-057865-1
- ↑ Emeléus Sharpe 1983 Advances in Inorganic Chemistry and Radiochemistry. Academic Press (1983. november 3.). ISBN 0-12-023627-3
- ↑ Emsley 1981 Emsley, John (1981. november 3.). „The Hidden Strength of Hydrogen”. New Scientist 91 (1264), 291–292. o.
- ↑ Emsley 2011 Emsley, John. Nature's Building Blocks: An A–Z Guide to the Elements, 2nd, Oxford: Oxford University Press (2011. november 3.). ISBN 978-0-19-960563-7
- ↑ Energetics, Inc. 1997 Energetics, Inc. (1997. november 3.). „Energy and Environmental Profile of the U.S. Aluminum Industry”. (Hozzáférés: 2017. április 7.)
- ↑ Filler Saha 2009 (2009) „Fluorine in Medicinal Chemistry: A Century of Progress and a 60-year Retrospective of Selected Highlights”. Future Medicinal Chemistry 1 (5), 777–791. o. DOI:10.4155/fmc.09.65. PMID 21426080.
- ↑ Fulton Miller 2006 Industrial Minerals & Rocks: Commodities, Markets, and Uses. Littleton: Society for Mining, Metallurgy, and Exploration (U.S.), 461–473. o. (2006. november 3.). ISBN 978-0-87335-233-8
- ↑ Gabriel et al. 1996 (1996) „Quantitative Structure-Activity Relationships of Perfluorinated Hetero-Hydrocarbons as Potential Respiratory Media”. ASAIO Journal 42 (6), 968–973. o. DOI:10.1097/00002480-199642060-00009. PMID 8959271.
- ↑ Godfrey et al. 1998 Inorganic Derivatives of the Elements, Chemistry of Arsenic, Antimony and Bismuth. London: Blackie Academic & Professional, 67–158. o. (1998. november 3.). ISBN 978-0-7514-0389-3
- ↑ Green Slinn Simpson Perfluorocarbon Fluids, Organofluorine Chemistry: Principles and Applications. New York: Plenum Press, 89–119. o. (1994. november 3.). ISBN 978-0-306-44610-8
- ↑ Greenwood Earnshaw 1998 Chemistry of the Elements, 2nd, Oxford: Butterworth Heinemann (1998. november 3.). ISBN 0-7506-3365-4
- ↑ Gribble 2002 (2002. november 3.) „Naturally Occurring Organofluorines”, Berlin, 121–136. o, Kiadó: Springer. DOI:10.1007/10721878_5.
- ↑ Grot 2011 Grot, Walter. Fluorinated Ionomers, 2nd, Oxford and Waltham: Elsevier (2011. november 3.). ISBN 978-1-4377-4457-6
- ↑ Hagmann 2008 (2008) „The Many Roles for Fluorine in Medicinal Chemistry”. Journal of Medicinal Chemistry 51 (15), 4359–4369. o. DOI:10.1021/jm800219f. PMID 18570365.
- ↑ Harbison 2002 (2002) „The Electric Dipole Polarity of the Ground and Low-lying Metastable Excited States of NF”. Journal of the American Chemical Society 124 (3), 366–367. o. DOI:10.1021/ja0159261. PMID 11792193.
- ↑ Harvnb Mitchell 2004 Mitchell, E. Siobhan. Antidepressants. New York: Chelsea House Publishers (2004. november 3.). ISBN 978-1-4381-0192-7
- ↑ Hasegawa et al. 2007 (2007. november 3.) „Reaction Between Carbon Dioxide and Elementary Fluorine”. Journal of Fluorine Chemistry 128 (1), 17–28. o. DOI:10.1016/j.jfluchem.2006.09.002.
- ↑ Haxel Hedrick Orris (2005. november 3.) „Rare Earth Elements—Critical Resources for High Technology, Fact Sheet 087-02”, Kiadó: U.S. Geological Survey. (Hozzáférés: 2014. január 31.)
- ↑ Hounshell Smith 1988 Science and Corporate Strategy: DuPont R & D, 1902–1980. Cambridge: Cambridge University Press (1988. november 3.). ISBN 0-521-32767-9
- ↑ Jaccaud et al. 2000 (2000) „Fluorine”, Weinheim 15, 381–395. o, Kiadó: Wiley-VCH. DOI:10.1002/14356007.a11_293.
- ↑ Johnson 2011 Johnson, Linda A.. „Against Odds, Lipitor Became World's Top Seller”, The Boston Globe , 2011. december 28. (Hozzáférés: 2013. október 24.)
- ↑ Kelly Miller 2005 Historical Fluorspar Statistics. U.S. Geological Service, 2005 (Hozzáférés: 2014. február 10.)
- ↑ Kern et al. 1994 (1994) „Temperature Variation of the Structural Parameters in Actinide Tetrafluorides”. The Journal of Chemical Physics 101 (11), 9333–9337. o. DOI:10.1063/1.467963.
- ↑ Khriachtchev et al. 2000 (2000) „A Stable Argon Compound”. Nature 406 (6798), 874–876. o. DOI:10.1038/35022551. PMID 10972285.
- ↑ King Malone Lilley (2000. november 3.) „New Classification and Update on the Quinolone Antibiotics”. American Family Physician 61 (9), 2741–2748. o. PMID 10821154. (Hozzáférés: 2013. október 8.)
- ↑ Kirsch 2004 Kirsch, Peer. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH (2004. november 3.). ISBN 978-3-527-30691-6
- ↑ Kuriakose Margrave 1965 (1965) „Kinetics of the Reactions of Elemental Fluorine. IV. Fluorination of Graphite”. Journal of Physical Chemistry 69 (8), 2772–2775. o. DOI:10.1021/j100892a049.
- ↑ Lagow 1970 Lagow, R. J.. The Reactions of Elemental Fluorine; A New Approach to Fluorine Chemistry. Ann Arbor: UMI (1970. november 3.)
- ↑ Lewars 2008 Lewars, Errol G.. Modeling Marvels: Computational Anticipation of Novel Molecules. Dordrecht: Springer (2008. november 3.). ISBN 1-4020-6972-3
- ↑ Lide 2004 Lide, David R.. Handbook of Chemistry and Physics, 84th, Boca Raton: CRC Press (2004. november 3.). ISBN 0-8493-0566-7
- ↑ Lidin Molochko Andreeva Химические свойства неорганических веществ (orosz nyelven). Moscow: Khimiya (2000. november 3.). ISBN 5-7245-1163-0
- ↑ Lusty et al. 2008 The Need for Indigenous Fluorspar Production in England. British Geological Survey, 2008 (Hozzáférés: 2013. október 13.)
- ↑ Mackay Mackay Henderson Introduction to Modern Inorganic Chemistry, 6th, Cheltenham: Nelson Thornes (2002. november 3.). ISBN 0-7487-6420-8
- ↑ Macomber 1996 Macomber, Roger. Organic chemistry. Sausalito: University Science Books (1996. november 3.). ISBN 978-0-935702-90-3
- ↑ Marggraf 1770 Marggraf, Andreas Sigismun (1770. november 3.). „Observation concernant une volatilisation remarquable d'une partie de l'espece de pierre, à laquelle on donne les noms de flosse, flüsse, flus-spaht, et aussi celui d'hesperos; laquelle volatilisation a été effectuée au moyen des acides” (french nyelven). Mémoires de l'Académie royale des sciences et belles-lettres XXIV, 3–11. o.
- ↑ Martin 2007 Concise Encyclopedia of the Structure of Materials. Oxford and Amsterdam: Elsevier (2007. november 3.). ISBN 978-0-08-045127-5
- ↑ Meusinger Chippendale Fairhurst Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy, Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 609–660. o.. DOI: 10.1002/14356007.b05_471 (2012. november 3.)
- ↑ Meyer 1977 Meyer, Eugene. Chemistry of Hazardous Materials. Englewood Cliffs: Prentice Hall (1977. november 3.). ISBN 978-0-13-129239-0
- ↑ Miller 2003a Miller, M. Michael. Fluorspar, U.S. Geological Survey Minerals Yearbook. U.S. Geological Survey, 27.1–27.12. o. (2003a)
- ↑ Miller 2003b Miller, M. Michael: Mineral Resource of the Month, Fluorspar. U.S. Geological Survey, 2003b. (Hozzáférés: 2013. október 24.)
- ↑ Moissan 1886 Moissan, Henri (1886. november 3.). „Action d'un courant électrique sur l'acide fluorhydrique anhydre” (french nyelven). Comptes rendus hebdomadaires des séances de l'Académie des sciences 102, 1543–1544. o. (Hozzáférés: 2013. október 9.)
- ↑ Moore Stanitski Jurs Principles of Chemistry: The Molecular Science. Belmont: Brooks/Cole (2010. november 3.). ISBN 978-0-495-39079-4
- ↑ Morrow Perry Cohen (1959) „The Formation of Dinitrogen Tetrafluoride in the Reaction of Fluorine and Ammonia”. Journal of the American Chemical Society 81 (23), 6338–6339. o. DOI:10.1021/ja01532a066.
- ↑ Murphy Schaffrath O'Hagan (2003) „Fluorinated Natural Products: The Biosynthesis of Fluoroacetate and 4-Fluorothreonine in Streptomyces cattleya”. Chemosphere 52 (2), 455–461. o. DOI:10.1016/S0045-6535(03)00191-7. PMID 12738270.
- ↑ Murthy Mehdi Ali Ashok University Chemistry. New Delhi: New Age International (1995. november 3.). ISBN 978-81-224-0742-6
- ↑ National Nuclear Data Center NuDat 2.1 National Nuclear Data Center: NuDat 2.1 Database. Brookhaven National Laboratory. (Hozzáférés: 2013. október 25.)
- Direct fluorination of carbon monoxide in microreactors”. Journal of Fluorine Chemistry 142, 19–23. o. doi:10.1016/j.jfluchem.2012.06.006 Walter Navarrini et al. (2012). „
- ↑ Nelson 1947 Nelson, Eugene W. (1947. november 3.). „'Bad Man' of The Elements”. Popular Mechanics 88 (2), 106–108, 260. o.
- ↑ Nelson et al. 2007 (2007) „Food Safety: Fluoroquinolone‐ResistantCampylobacterSpecies and the Withdrawal of Fluoroquinolones from Use in Poultry: A Public Health Success Story”. Clinical Infectious Diseases 44 (7), 977–980. o. DOI:10.1086/512369. PMID 17342653.
- ↑ Nielsen 2009 (2009) „Micronutrients in Parenteral Nutrition: Boron, Silicon, and Fluoride”. Gastroenterology 137 (5), S55–60. o. DOI:10.1053/j.gastro.2009.07.072. PMID 19874950.
- ↑ Norwood-Fohs 1907 Kentucky Geological Survey, Bulletin No. 9: Fluorspar Deposits of Kentucky. Kentucky Geological Survey (1907. november 3.)
- ↑ Noury Silvi Gillespie (2002) „Chemical Bonding in Hypervalent Molecules: Is the Octet Rule Relevant?”. Inorganic Chemistry 41 (8), 2164–2172. o. DOI:10.1021/ic011003v. PMID 11952370. (Hozzáférés: 2012. május 23.)
- ↑ NUBASE 2003 (2003) „The NUBASE evaluation of nuclear and decay properties”. Nucl. Phys. A 729, 3–128. o. [2011. július 20-i dátummal az eredetiből archiválva]. DOI:10.1016/j.nuclphysa.2003.11.001. (Hozzáférés: 2010. július 5.)
- ↑ O'Hagan et al. 2002 (2002) „Biochemistry: Biosynthesis of an Organofluorine Molecule”. Nature 416 (6878), 279. o. DOI:10.1038/416279a. PMID 11907567.
- ↑ O'Hagan 2008 (2003) „Fluorinated Natural Products: The Biosynthesis of Fluoroacetate and 4-Fluorothreonine in Streptomyces cattleya”. Chemosphere 52 (2), 455–461. o. DOI:10.1016/S0045-6535(03)00191-7. PMID 12738270.
- ↑ Okada et al. 1998 (1998) „Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes”. Electrochimica Acta 43 (24), 3741–3747. o. DOI:10.1016/S0013-4686(98)00132-7.
- ↑ Okazoe 2009 (2009) „Overview on the History of Organofluorine Chemistry from the Viewpoint of Material Industry”. Proceedings of the Japan Academy, Series B 85 (8), 276–289. o. DOI:10.2183/pjab.85.276.
- ↑ Olivares Uauy 2004 (2004. november 3.) „Essential Nutrients in Drinking Water (Draft)”, Kiadó: World Health Organization (WHO). (Hozzáférés: 2017. április 7.)
- ↑ Parente 2001 Parente, Luca. The Development of Synthetic Glucocorticoids, Glucocorticoids. Basel: Birkhäuser, 35–53. o. (2001. november 3.). ISBN 978-3-7643-6059-7
- ↑ Partington 1923 Partington, J. R. (1923. november 3.). „The early history of hydrofluoric acid”. Memoirs and Proceedings of the Manchester Literary and Philosophical Society 67 (6), 73–87. o.
- ↑ Patnaik 2007 Patnaik, Pradyot. A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd, Hoboken: John Wiley & Sons (2007. november 3.). ISBN 978-0-471-71458-3
- ↑ Pauling 1960 Pauling, Linus. The Nature of the Chemical Bond, 3rd, Ithaca: Cornell University Press (1960. november 3.). ISBN 978-0-8014-0333-0
- ↑ Perry 2011 Perry, Dale L.. Handbook of Inorganic Compounds, 2nd, Boca Raton: CRC Press (2011. november 3.). ISBN 978-1-4398-1461-1
- ↑ Pitzer 1975 (1975) „Fluorides of Radon and Element 118”. Journal of the Chemical Society, Chemical Communications (18), 760b–761. o. DOI:10.1039/C3975000760B.
- ↑ Pitzer 1993 Molecular Structure and Statistical Thermodynamics: Selected Papers of Kenneth S. Pitzer. Singapore: World Scientific Publishing (1993. november 3.). ISBN 978-981-02-1439-5
- ↑ Pizzo 2007 (2007) „Community Water Fluoridation and Caries Prevention: A Critical Review”. Clinical Oral Investigations 11 (3), 189–193. o. DOI:10.1007/s00784-007-0111-6. PMID 17333303.
- ↑ Preskorn 1996 Preskorn, Sheldon H.. Clinical Pharmacology of Selective Serotonin Reuptake Inhibitors. Caddo: Professional Communications (1996. november 3.). ISBN 978-1-884735-08-0
- ↑ Principe 2012 Principe, Lawrence M.. The Secrets of Alchemy. Chicago: University of Chicago Press (2012. november 3.). ISBN 978-0-226-68295-2
- ↑ Proudfoot Bradberry Vale (2006) „Sodium Fluoroacetate Poisoning”. Toxicological Reviews 25 (4), 213–219. o. DOI:10.2165/00139709-200625040-00002. PMID 17288493.
- ↑ PRWeb 2010 PRWeb: Global Fluorochemicals Market to Exceed 2.6 Million Tons by 2015, According to a New Report by Global Industry Analysts, Inc.. prweb.com, 2010. október 28. (Hozzáférés: 2013. október 24.)
- ↑ PRWeb 2012 PRWeb: Global Fluorspar Market to Reach 5.94 Million Metric Tons by 2017, According to New Report by Global Industry Analysts, Inc.. prweb.com, 2012. február 23. (Hozzáférés: 2013. október 24.)
- ↑ PRWeb 2013 PRWeb: Fluoropolymers Market is Poised to Grow at a CAGR of 6.5% & to Reach $9,446.0 Million by 2016 – New report by MarketsandMarkets. prweb.com, 2013. április 7. (Hozzáférés: 2013. október 24.)
- ↑ Pyykkö Atsumi 2009 Pekka Pyykkö Prof., Michiko Atsumi Dr. (2009). „Molecular Double-Bond Covalent Radii for Elements Li–E112”. Chemistry - A European Journal 15 (46). doi:10.1002/chem.200901472
- ↑ Raghavan 1998 Raghavan, P. S.. Concepts and Problems in Inorganic Chemistry. Delhi: Discovery Publishing House (1998. november 3.). ISBN 978-81-7141-418-5
- ↑ Raj Erdine 2012 Pain-Relieving Procedures: The Illustrated Guide. Chichester: John Wiley & Sons (2012. november 3.). ISBN 978-0-470-67038-5
- ↑ Ramkumar 2012 Ramkumar, Jayshree. Nafion Perfluorosulphonate Membrane: Unique Properties and Various Applications, Functional Materials: Preparation, Processing and Applications. London and Waltham: Elsevier, 549–578. o. (2012. november 3.). ISBN 978-0-12-385142-0
- ↑ Renda et al. 2004 (2004) „On the origin of fluorine in the Milky Way”. Monthly Notices of the Royal Astronomical Society 354 (2), 575–580. o. doi:10.1111/j.1365-2966.2004.08215.x
- ↑ Renner 2006 (2006) „The Long and the Short of Perfluorinated Replacements”. Environmental Science & Technology 40 (1), 12–13. o. DOI:10.1021/es062612a. PMID 16433328.
- ↑ Rhoades 2008 Rhoades, David Walter. Broadband Dielectric Spectroscopy Studies of Nafion. Ann Arbor: ProQuest (2008. november 3.). ISBN 978-0-549-78540-8
- ↑ Richter Hahn Fuchs (2001. november 3.) „Purple Fluorite: A Little Known Artists' Pigment and Its Use in Late Gothic and Early Renaissance Painting in Northern Europe”. Studies in Conservation 46, 1–13. o. DOI:10.1179/sic.2001.46.1.1. JSTOR 1506878.
- ↑ Riedel Kaupp 2009 Sebastian Riedel, Martin Kaupp (2009). „highest oxidation states of the transition metal elements {{{title}}}”. Coordination Chemistry Reviews 253 (5-6), 606–624. o. [halott link] doi:10.1016/j.ccr.2008.07.014
- ↑ Ripa 1993 (2008) „A Half-century of Community Water Fluoridation in the United States: Review and Commentary”. Journal of Public Health Dentistry 53 (1), 17–44. o. [2009. március 4-i dátummal az eredetiből archiválva]. DOI:10.1111/j.1752-7325.1993.tb02666.x. PMID 8474047. (Hozzáférés: 2009. január 1.)
- ↑ Salager 2002 Salager, Jean-Louis. Surfactants: Types and Uses, FIRP Booklet # 300-A. Laboratory of Formulation, Interfaces, Rheology, and Processes, Universidad de los Andes (2002. november 3.). Hozzáférés ideje: 2013. október 13.
- ↑ Sarkar 2008 (2008) „Artificial Blood”. Indian Journal of Critical Care Medicine 12 (3), 140–144. o. DOI:10.4103/0972-5229.43685. PMID 19742251. PMC 2738310.
- ↑ Scheele 1771 Scheele, Carl Wilhelm (1771. november 3.). „Undersŏkning om fluss-spat och dess syra” (swedish nyelven). Kungliga Svenska Vetenskapsademiens Handlingar [Proceedings of the Royal Swedish Academy of Science] 32, 129–138. o.
- ↑ Schimmeyer 2002 Schimmeyer, S. (2002. november 3.). „The Search for a Blood Substitute”. Illumin, Columbia 15 (1), Kiadó: University of Southern Carolina. [2011. október 2-i dátummal az eredetiből archiválva]. (Hozzáférés: 2013. október 15.)
- ↑ Schmedt Mangstl Kraus Dr. Jörn Schmedt auf der Günne, Martin Mangstl, Priv.-Doz. Dr. Florian Kraus (2012). „Occurrence of Difluorine F2 in Nature—In Stu Proof and Quantification by NMR Spectroscopy”. Angewandte Chemie International Edition 51 (31). doi:10.1002/anie.201203515
- ↑ Schmitz et al. 2000 (2000) „Use of Fluorine-18 Fluoro-2-deoxy-D-glucose Positron Emission Tomography in Assessing the Process of Tuberculous Spondylitis”. Journal of Spinal Disorders 13 (6), 541–544. o. DOI:10.1097/00002517-200012000-00016. PMID 11132989. (Hozzáférés: 2013. október 8.)
- ↑ Schulze-Makuch Irwin 2008 Life in the Universe: Expectations and Constraints, 2nd, Berlin: Springer-Verlag (2008. november 3.). ISBN 978-3-540-76816-6
- ↑ Senning 2007 Senning, A.. Elsevier's Dictionary of Chemoetymology: The Whies and Whences of Chemical Nomenclature and Terminology. Amsterdam and Oxford: Elsevier (2007. november 3.). ISBN 978-0-444-52239-9
- ↑ Shriver Atkins 2010 Solutions Manual for Inorganic Chemistry. New York: W. H. Freeman (2010. november 3.). ISBN 978-1-4292-5255-3
- ↑ Siegemund et al. 2005 Fluorine Compounds, Organic, Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 443–494. o.. DOI: 10.1002/14356007.a11_349 (2000). ISBN 3527306730
- ↑ Stillman 1912 Stillman, John Maxson (1912. december 1.). „Basil Valentine, A Seventeenth Century Hoax”. Popular Science Monthly 81. (Hozzáférés: 2013. október 14.)
- ↑ Storer 1864 Storer, Frank H.. First Outlines of a Dictionary of Solubilities of Chemical Substances. Cambridge: Sever and Francis (1864. november 3.)
- ↑ Swinson 2005 Swinson, Joel (2005. június 1.). „Fluorine – A Vital Element in the Medicine Chest”. PharmaChem, 26–27. o, Kiadó: Pharmaceutical Chemistry. [2012. február 8-i dátummal az eredetiből archiválva]. (Hozzáférés: 2013. október 9.)
- ↑ Tanner Industries 2011 Tanner Industries: Anhydrous Ammonia: (MSDS) Material Safety Data Sheet. tannerind.com, 2011. január 1. (Hozzáférés: 2013. október 24.)
- ↑ TMR 2013 Transparency Market Research: Fluorochemicals Market is Expected to Reach USD 21.5 Billion Globally by 2018: Transparency Market Research. Transparency Market Research Blog, 2013. május 17. [2014. február 22-i dátummal az eredetiből archiválva]. (Hozzáférés: 2013. október 15.)
- ↑ Toon 2001 Toon, Richard (2011. november 3.). „Fluorine, An Obsession with a Tragic Past”. Education in Chemistry 48 (5), 148–151. o.
- ↑ Viel-Goldwhite 1993 1906 Nobel Laureate: Henri Moissan, 1852–1907, Nobel Laureates in Chemistry, 1901–1992. Washington: American Chemical Society; Chemical Heritage Foundation, 35–41. o. (1993. november 3.). ISBN 978-0-8412-2690-6
- ↑ Villalba Ayres Schroder Gara Villalba, Robert U. Ayres, Hans Schroder (2007). „Accounting for Fluorine: Production, Use, and Loss”. Journal of Industrial Ecology 11 (1), 85–101. o. doi:10.1162/jiec.2007.1075
- ↑ Walsh 2009 Walsh, Kenneth A.. Beryllium Chemistry and Processing. Materials Park: ASM International (2009. november 3.). ISBN 978-0-87170-721-5
- ↑ Walter 2014 Walter, P. (2013. november 3.). „Honeywell Invests $300m in Green Refrigerant”. Chemistry World.
- ↑ Weeks 1932 (1932) „The Discovery of the Elements. XVII. The Halogen Family”. Journal of Chemical Education 9 (11), 1915–1939. o. DOI:10.1021/ed009p1915.
- ↑ Werner et al. 2011 (2011) „Unnecessary use of Fluoroquinolone Antibiotics in Hospitalized Patients”. BMC Infectious Diseases 11, 187–193. o. DOI:10.1186/1471-2334-11-187. PMID 21729289. PMC 3145580.
- ↑ Wiberg Wiberg Holleman Inorganic Chemistry. San Diego: Academic Press (2001. november 3.). ISBN 978-0-12-352651-9
- ↑ Willey 2007 Willey, Ronald R.. Practical Equipment, Materials, and Processes for Optical Thin Films. Charlevoix: Willey Optical (2007. november 3.). ISBN 978-0-615-14397-2
- ↑ Young 1975 Young, David A. (1975. november 3.). „Phase Diagrams of the Elements”, Kiadó: Lawrence Livermore Laboratory. (Hozzáférés: 2011. június 10.)
Fordítás
- Ez a szócikk részben vagy egészben a fluorine című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
További információk
- a magyar Wikipédia ezüstöt tartalmazó vegyületeinek listája belső lapon és külső keresővel