Dielektrikum

A Wikipédiából, a szabad enciklopédiából

A dielektrikum elektromosan szigetelő anyag. Általában bármely szigetelő anyag lehet dielektrikum. A szigetelő elektromos vezetőképessége rossz. Nincsenek benne szabad töltéshordozók, és fajlagos ellenállása nagyobb, mint 108 Ωm. A jelenségkör szorosan összefügg az anyagok elektromos és mágneses energiát tároló képességével. Ennek egyik mennyisége a χe elektromos szuszceptibilitás (vagy más néven dielektromos szuszceptibilitás), amely azt méri, hogy a szigetelő mennyire polarizálódik külső elektromos tér hatására. Ez a mennyiség összefüggésben áll azzal is, hogy milyen a fény terjedési sebessége a közegben.

A jó dielektrikum poláros molekulái a külső elektromos tér rákapcsolásakor az erőtér irányába állnak be. Ez a dielektromos polarizáció jelensége, ami növeli a kondenzátor kapacitását.

Alkalmazása[szerkesztés | forrásszöveg szerkesztése]

Tipikus alkalmazás, amikor a dielektrikumot a kondenzátorlemezek közé helyezik, ezzel a kondenzátornak megnő az elektromos kapacitása és az átütési feszültsége (a vákuumhoz képest).

Jellemzői[szerkesztés | forrásszöveg szerkesztése]

A dielektrikumokra jellemző mennyiségek a permittivitás, a veszteségi szög és az átütési feszültség. Az iparban alkalmazott dielektrikumok nagyon magas átütési feszültségű, nagy szakítószilárdságú, vegyileg stabil, kúszóárammal szemben ellenálló anyagok.

Permittivitás[szerkesztés | forrásszöveg szerkesztése]

A síkkondenzátor kapacitása egyenesen arányos a benne levő dielektrikum permittivitásával:

C = \varepsilon_r \varepsilon_0 \cdot { A \over d },

ahol C a kapacitás, εr a dielektrikum relatív permittivitása, \varepsilon _0\approx 8,852\cdot 10^{-12} a vákuum permittivitása, A a fegyverzetek felülete, és d a fegyverzetek közötti távolság.

Néhány anyag relatív permittivitása:

paraffin 1,9 - 2,2
csillám 4 - 8
üveg 5 - 16
porcelán 6 - 8
speciális kerámiák ~ 100
bárium-titanát ~ 1000
víz 81
etil-alkohol 24
petróleum 2,1
levegő 1,000 59
neoprén 6,7
papír 3,7
kvarc 4,3
stroncium-titanát 300
réz-oxid 18
titán-dioxid ~ 80
CaTiO3 ~ 160
(SrBi)TiO3 ~ 1000
benzol ~ 2,3
nitrobenzol 37
hidrogén 1,000264
kén-dioxid 1,0099

A levegő relatív permittivitását a legtöbb számításban egynek veszik, mivel maga a számítás sokkal pontatlanabb. A víz kiugróan magas permittivitása a vízmolekula erős polározottságának, és ebből következő nagy dipólusnyomatékának köszönhető.

Veszteségi szög[szerkesztés | forrásszöveg szerkesztése]

A dielektromos veszteségi tényezőnek is nevezett veszteségi szög a D dielektrikus eltolás és az E erőtér által bezárt szög. Kiszámítása:

\mathrm{tg} \delta = \frac{\Im e^*(w)}{\Re e^*(w)},

ahol e*(w) a komplex permittivitás, és w a váltóáram frekvenciája.

Átütési feszültség[szerkesztés | forrásszöveg szerkesztése]

Az átütési feszültség az a feszültség, aminél a dielektrikum vezetővé válik. Az eközben végbement kémiai reakciók miatt a szilárd dielektrikumot ki kell dobni, mivel ez a folyamat visszafordíthatatlan. A folyékony és a gáz halmazállapotú dielektrikumokban az áramlás visszaállítja a szigetelőképességet, bár a kémiai reakciók termékei az anyagban maradnak. Ez a feszültség egyenesen arányos a dielektrikum vastagságával, ezért V/m-ben mérik. Gyakorlati okok miatt azonban inkább a MV/cm mértékegységet használják.

Táblázat a dielektrikumok átütési feszültségéről. Az adatok MV/cm-ben értendők.

paraffin 10
csillám 2,5 - 4,2
üveg 4 - 14
porcelán 1 - 4
speciális kerámiák 0,45
bárium-titanát > 0,025
víz 3
etil-alkohol
petróleum
levegő > 0,025 (nyomásfüggő)
neoprén 12
papír 0,5 - 16
kvarc 4 - 6
stroncium-titanát
réz-oxid
titán-dioxid 1 - 2
CaTiO3 ~
(SrBi)TiO3 ~
benzol 1,6
nitrobenzol 37
hidrogén
kén-dioxid

Források[szerkesztés | forrásszöveg szerkesztése]

Külső hivatkozások[szerkesztés | forrásszöveg szerkesztése]