Kűrium

A Wikipédiából, a szabad enciklopédiából
96 ameríciumkűriumberkélium
Gd

Cm

(Uqh)
Általános
Név, vegyjel, rendszám kűrium, Cm, 96
Elemi sorozat aktinoidák
Csoport, periódus, mező ?, 7, f
Megjelenés ezüstös
Atomtömeg (247)  g/mol
Elektronszerkezet [Rn] 5f7 6d1 7s²
Elektronok héjanként 2, 8, 18, 32, 25, 9, 2
Fizikai tulajdonságok
Halmazállapot szilárd
Sűrűség (szobahőm.) 13,51 g/cm³
Olvadáspont 1613 K
(1340 °C, 2444 °F)
Forráspont 3383 K
(3110 °C, 5630 °F)
Olvadáshő\Delta_{fus}{H}^\ominus  ? 15 kJ/mol
Gőznyomás
P/Pa 1 10 100 1 k 10 k 100 k
T/K 1788 1982        
Atomi tulajdonságok
Kristályszerkezet hexagonális
Oxidációs szám 3
(amfoter oxid)
Elektronegativitás 1,3 (Pauling-skála)
Ionizációs energia 1.: 581 kJ/mol
Egyebek
Mágnesség nincs adat
CAS-szám 7440-51-9
Fontosabb izotópok
Fő cikk: A kűrium izotópjai
Izotóp t.e. felezési idő B.m. B.e. (MeV) B.t.
242Cm mest 160 nap SF - -
α 6,1 238Pu
243Cm mest 29,1 év α 6,169 239Pu
ε 0,009 243Am
SF - -
244Cm mest 18,1 év SF - -
α 5,902 240Pu
245Cm mest 8500 év SF - -
α 5,623 241Pu
246Cm mest 4730 év α 5,475 242Pu
SF - -
247Cm mest 15,6 E6 év α 5,353 243Pu
248Cm mest 340 E3 év α 5,162 244Pu
SF - -
250Cm mest 9000 év SF - -
α 5,169 246Pu
β- 0,037 250Bk
Hivatkozások

A kűrium a periódusos rendszer egyik eleme. Vegyjele Cm, rendszáma 96. A kűriumot Glenn T. Seaborg, Ralph A. James, és Albert Ghiorso fedezte fel a Berkeley-i Kaliforniai Egyetemen.

Tulajdonságai[szerkesztés | forrásszöveg szerkesztése]

A kűrium a természetben nem található meg. kűrium-248 izotópot csak milligrammnyi mennyiségben állították elő, de kűrium-242-t és kűrium-244-et grammnyi mennyiségben készítenek, ami lehetővé teszi az elem egyes tulajdonságainak megállapítását. Kűrium-244-et nagyobb mennyiségben plutónium neutronokkal való bombázásával állítanak elő. A kűriumnak csak néhány ipari alkalmazása ismert, a jövőben azonban felhasználhatják radioizotópos termoelektromos generátorokban. A kűrium a csontszövetben felhalmozódik, sugárzása elroncsolja a csontvelőt és így leállítja a vörösvérsejt-képződést.

A kűrium kémiailag valamelyest hasonlít a ritkaföldfém homológjára, a gadolíniumra, de kristályszerkezete bonyolultabb. A kűrium ezüstfehér színű, reakcióképes, az alumíniumnál elektropozitívabb fém (a legtöbb háromértékű kűrium vegyület enyhén sárgás színű).

Sokat tanulmányozták radioizotópos termoelektromos generátorokban történő lehetséges felhasználását. A kűrium-242 akár 120 watt hőenergiát is szolgáltathat gramonként (W/g), nagyon rövid felezési ideje azonban nem teszi lehetővé hosszú élettartamú energiaforrás készítését. A kűrium-242 alfa-bomlással plutónium-238-cá alakulhat át, amely a radioizotópos termoelektromos generátorokban (RTG) leggyakrabban használt izotóp. A kűrium-244 RTG-kben történő felhasználását is vizsgálták, ennek maximális energiasűrűsége ~3 W/g,[1] de spontán hasadás révén ez az izotóp erős neutronsugárzást bocsát ki. A kűrum-243 30 év körüli felezési idejével és jó – ~1,6 W/g – energiasűrűségével ideális anyagnak tűnhet, de bomlástermékei jelentős mértékű gamma- és béta-sugárzást bocsátanak ki.

Vegyületei[szerkesztés | forrásszöveg szerkesztése]

Néhány vegyülete:

  • kűrium-dioxid (CmO2)
  • kűrium-trioxid (Cm2O3)
  • kűrium-bromid (CmBr3)
  • kűrium-klorid (CmCl3)
  • kűrium-tetrafluorid (CmF4)
  • kűrium-jodid (CmI3)

Története[szerkesztés | forrásszöveg szerkesztése]

A kűriumot elsőként 1944-ben állította elő Glenn T. Seaborg, Ralph A. James és Albert Ghiorso a Berkeley városban levő University of California-n.[2] A tudósok az elemet Marie Curie és férje, Pierre után nevezték el, akik a rádium felfedezésével és a radioaktivitás jelenségének tanulmányozásával váltak híressé. Ez volt az első alkalom, hogy egy kémiai elemet történelmi személyről neveztek el. A kűriumot kémiailag a Chicagói Egyetem Metallurgical Laboratory-ban (ma Argonne National Laboratory) azonosították. Ez volt a harmadikként felfedezett transzurán elem, noha a transzuránok sorában csak a negyedik. Berkeley-ben az 1,5 méteres ciklotronban plutónium-239 céltárgyat bombáztak alfa-részecskékkel, melynek során kűrium-242 (felezési ideje 163 nap) és egy szabad neutron keletkezett.[3]

23994Pu + 42He24296Cm + 10n

Mivel az új elemek – az amerícium és kűrium – felfedezése szorosan kapcsolódott a Manhattan-Tervhez, az eredmények titkosak voltak és nem lehetett publikálni őket. Seaborg az új elemek felfedezését egy gyerekeknek szóló rádióműsorban, a Quiz Kidsben jelentette be, öt nappal az American Chemical Society 1945. november 11-ei gyűlésén tartandó hivatalos előadást megelőzően.[4] Seaborg szabadalmaztatta is az új elemek szintézisét.[5]

Louis Werner és Isadore Perlman 1947-ben szemmel látható mennyiségű kűrium-242-hidroxid mintát állított elő a University of California-n, ők amerícium-241-et bombáztak neutronokkal.[6] A kűriumot elemi állapotban elsőként 1951-ben állították elő.[7][8]

Izotópjai[szerkesztés | forrásszöveg szerkesztése]

A kűrium 19 radioizotópját írták le, ezek közül a legstabilabb a Cm-247, 1,56·107 év felezési idővel, ezt követi a Cm-248 3,40·105 évvel, a Cm-250 9000 évvel és a Cm-245 8500 évvel. A többi radioaktív izotóp felezési ideje rövidebb mint 30 év, a többségé pedig 33 napnál is kevesebb. A kűriumnak 4 metastabil állapota is ismert, ezek közül a legstabilabb a Cm-244m (t½ 34 ms). A kűrium izotópjainak atomtömege 233,051 u (Cm-233) és 252,085 u (Cm-252) közé esik.

Tüzelőanyag-ciklus[szerkesztés | forrásszöveg szerkesztése]

A 238Pu és 244Cm közötti elemátalakulás folyamata LWR-ben (könnyűvizes reaktorban).[9]
A hasadás száazlékos aránya 100 mínusz a feltüntetett százalékok.
Az elemátalakulás teljes sebessége nuklidtól függően nagymértékben változik.
A 245Cm–248Cm felezési ideje hosszú, bomlásuk elhanyagolható.
Termikus neutronra vonatkozó hatáskeresztmetszetek (barnban)
242Cm 243Cm 244Cm 245Cm 246Cm 247Cm
Hasadás 5 617 1,04 2145 0,14 81,90
Befogás 16 130 15,20 369 1,22 57
Befogás/hasadás arány 3,20 0,21 14,62 0,17 8,71 0,70
53 MWnap/kg kiégési szinten 20 év után kimerült alacsony dúsítású urán [10]
3 gyakori izotóp 51 3700 390
Gyorsneutronos reaktor kevert fém-oxidos hasadóanyag (5 minta átlaga, 66-120GWnap/t kiégési szint)[11]
Kűrium összesen 3,09·10−3% 27,64% 70,16% 2,166% 0,0376% 0,000928%

A páratlan tömegszámú izotópok maghasadásra képesek, a páros tömegszámúak csak befogják a neutronokat, de azt is csak kisebb sebességgel. A termikus reaktorokban ezért a páros tömegszámú izotópok a kiégés során felhalmozódnak.

Az energiatermelő reaktorokban használandó kevert-oxid fűtőanyag (MOX) nem, vagy csak kis mennyiségben tartalmazhat kűriumot, mivel a 248Cm neutronaktivációja során kalifornium keletkezik, amely erős neutron sugárzó. A kalifornium elszennyezné a tüzelőanyag-ciklus végét, és növelné a munkások sugárdózisát. Ezért ha termikus neutronos reaktorban másodlagos aktinoidákat akarnak fűtőanyagként használni, akkor abból el kell távolítani a kűriumot, vagy különleges fűtőelemrúdba kell helyezni, amelyben nincs más aktinoida.

Felhasználása[szerkesztés | forrásszöveg szerkesztése]

A 244Cm és 242Cm izotópok több éves vagy hónapos felezési idővel rendelkező erős alfa-sugárzók, mely folyamat során jelentős mennyiségű hőt termelnek. Ez a tulajdonságuk alkalmassá teszi őket alfa-sugárforrásként és radioizotópos termoelektromos generátorok hőforrásaként való felhasználásra.

Kűrium-244 sugárforrást használnak több amerikai és európai űrmisszió fedélzetén az alfa-részecske röntgenspektrométerben, például a Mars Exploration Roverben[12] és a Rosetta/Philae-ben is. Több jövőbeli küldetésen is javasolják RTG-ben való használatukat.[13][14]

Hivatkozások[szerkesztés | forrásszöveg szerkesztése]

  • Ez a szócikk részben vagy egészben a Curium című angol Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel.
  1. Gmelins Handbuch der anorganischen Chemie, System Nr. 71, Band 7 a, Transurane, Teil A 2, p. 289.
  2. Hall, Nina. The New Chemistry: A Showcase for Modern Chemistry and Its Applications. Cambridge University Press, 8–9. o (2000). ISBN 9780521452243 
  3. G. T. Seaborg, R. A. James, A. Ghiorso: "The New Element Curium (Atomic Number 96)", NNES PPR (National Nuclear Energy Series, Plutonium Project Record), Vol. 14B, The Transuranium Elements: Research Papers, Paper No. 22.2, McGraw-Hill Book Co., Inc., New York, 1949; Abstract; Typoskript (January 1948).
  4. PEPLING, RACHEL SHEREMETA: Chemical & Engineering News: It's Elemental: The Periodic Table – Americium, 2003. szeptember 23. (Hozzáférés: 2008. december 7.)
  5. Glen T. Seaborg "Element" U.S. Patent 3161462  Issue date: December 1964
  6. L. B. Werner, I. Perlman: "Isolation of Curium", NNES PPR (National Nuclear Energy Series, Plutonium Project Record), Vol. 14 B, The Transuranium Elements: Research Papers, Paper No. 22.5, McGraw-Hill Book Co., Inc., New York, 1949.
  7. Wallmann, J. C., Crane, W. W. T.; Cunningham, B. B. (1951.). „The Preparation and Some Properties of Curium Metal”. Journal of the American Chemical Society 73 (1), 493–494. o. DOI:10.1021/ja01145a537.  
  8. Werner, L. B., Perlman, I. (1951.). „First Isolation of Curium"”. Journal of the American Chemical Society 73 (1), 5215–5217. o. DOI:10.1021/ja01155a063.  
  9. Sasahara, Akihiro (2004. szeptember 23.). „Neutron and Gamma Ray Source Evaluation of LWR High Burn-up UO2 and MOX Spent Fuels”. Journal of Nuclear Science and Technology 41 (4), 448–456. o. DOI:10.3327/jnst.41.448.  
  10. Limited Proliferation-Resistance Benefits from Recycling Unseparated Transuranics and Lanthanides from Light-Water Reactor Spent Fuel (PDF)
  11. Analysis of Curium Isotopes in Mixed Oxide Fuel Irradiated in Fast Reactor (PDF)
  12. R. Rieder, R. Gellert, J. Brückner, G. Klingelhöfer, G. Dreibus, A. Yen, S. W. Squyres (2003.). „The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers”. J. Geophysical Research 108, 8066. o. DOI:10.1029/2003JE002150.  
  13. Miskolczy, G. (1990.). „Radioisotope Thermionic Converters for Space Applications”. Energy Conversion Engineering Conference (IECEC-90) 1, 222–226. o. DOI:10.1109/IECEC.1990.716874.  
  14. O’Brien,, R.C., Ambrosi, R. M.; Bannister, N.P.; Howe S.D.; Atkinso, H. V. (2008.). „Safe radioisotope thermoelectric generators and heat sources for space applications”. Journal of Nuclear Materials 377 (3), 506–521. o. DOI:10.1016/j.jnucmat.2008.04.009.  

Külső hivatkozások[szerkesztés | forrásszöveg szerkesztése]

Commons
A Wikimédia Commons tartalmaz Kűrium témájú médiaállományokat.
Wiktionary-logo-hu.png
Nézd meg curium kűrium címszót a Wikiszótárban!