Radioaktivitás

A Wikipédiából, a szabad enciklopédiából
Az alfa-sugárzás hélium atommagokból áll, és akár egy vékony papír is elnyeli őket. A béta-sugárzás elektronsugárzás, és egy alumíniumlemez elnyeli őket. A gamma-sugárzás elnyelésére csak egy vastag ólomlemez képes hatékonyan, habár a sugárzás erőssége az útja során folyamatosan csökken.

A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. Ez nagy energiájú ionizáló sugárzást kelt. Radioaktív sugárzás a természetben is előfordul. Mérésére részecskedetektorokat használnak.

Felfedezése[szerkesztés | forrásszöveg szerkesztése]

A radioaktivitást 1896-ban Henri Becquerel francia tudós fedezte fel, amiért 1903-ban megkapta a fizikai Nobel-díjat. Becquerel foszforeszkáló anyagokkal kísérletezett. Úgy gondolta, hogy a katódsugárcső fénye valamilyen módon összefügg a foszforeszcenciával. Különféle foszforeszkáló anyagokat burkolt fekete papírba egy fényképlemezzel együtt, és a fényképlemez feketedését vizsgálta. Nem észlelt feketedést amíg uránsókkal nem próbálkozott. Miután a nem foszforeszkáló uránsókkal próbálkozott, kiderült, hogy a jelenségnek semmi köze sincs a foszforeszcenciához. Kimutatta, hogy a sugárzás intenzitása arányos az urán koncentrációjával, így arra következtetett, hogy ez a sugárzás az uránatom tulajdonsága. Pierre és Marie Curie új, sugárzó elemek után kutatva fedezték fel, hogy a tórium is sugároz. Az uránércből kivontak még két erősebben sugárzó elemet, a polóniumot és a rádiumot. A Curie házaspár nehéz és fárasztó munkájának szemléltetéséül: nyolc tonna uránércből 0,1 gramm rádium nyerhető ki. A Curie házaspár és Ernest Rutherford kísérletei a radioaktív sugárzásnak két összetevőjét mutatta ki: a nagyon rövid hatótávolságú (levegőben kevesebb, mint 1 cm) alfa-sugárzás, és a béta-sugárzás (pár tíz cm levegőben). 1900-ban fedezte föl Paul Ulrich Villard a gamma-sugárzást, amit 10 cm ólom sem bír elnyelni. Később bebizonyították, hogy a gamma-sugárzás valójában nagyenergiájú elektromágneses sugárzás.

Radioaktív sugárzás (bomlás)[szerkesztés | forrásszöveg szerkesztése]

Három fontosabb fajtája van. Egyre nagyobb áthatolóképességgel:

  1. Alfa-bomlás során az atommagból egy hélium atommag (erősen kötött 2 proton és 2 neutron) válik ki. Erősen ionizáló, viszont a hatótávolsága levegőben 1 cm alatti.
  2. Béta-bomlás során az atommagban neutronból lesz proton, elektron kibocsátása közben. Így a béta-sugárzás valójában elektronsugárzás. Közepesen ionizáló hatású, hatótávolsága levegőben pár tíz cm.
  3. Gamma-bomlás során energia távozik nagy energiájú fotonként. Az előbbiek kísérőjelensége szokott lenni. Hatótávolsága légüres térben praktikusan végtelen, a nagy tömegszámú elemek (általában ólom) gyengítik hatékonyan.

Az alábbi táblázat rendszerezi a három fontosabb és több további bomlásfajtát nagyjából csökkenő előfordulási valószínűség szerint rendezve. A az atom tömegszámát (protonok és neutronok együttes száma), Z pedig a rendszámot (protonok száma) jelöli.

Bomlási mód Résztvevő részecskék Leánymagok Mag gerjesztettség
Bomlás magemisszióval
Alfa-bomlás Egy alfa-részecskét (A=4, Z=2) emittál a mag
(A-4, Z-2)
Protonemisszió Egy proton kilökődik a magból
(A-1, Z-1)
?
Neutronemisszió Egy neutron kilökődik a magból
(A-1, Z)
?
Kettős protonemisszió Egyidejűleg két proton kilökődése a magból
(A-2, Z-2)
Spontán hasadás A kezdeti mag kettő vagy több kisebb magra, valamint részecskékre bomlik
-
Klaszterbomlás, nehézion-emisszió A mag kibocsát egy kis tömegű magot (A1, Z1), mely nehezebb az alfa-részecskénél
(A-A1, Z-Z1) + (A1,Z1)
A béta-bomlás különböző módjai
Negatív béta-bomlás A mag egy elektront és egy antineutrínót emittál
(A, Z+1)
Pozitronemisszió vagy pozitív béta-bomlás A mag egy pozitront és egy neutrínót emittál
(A, Z-1)
Elektronbefogás A mag befog egy héjelektront és kibocsát egy neutrínót
– A leánymag gerjesztett, instabil állapotba kerül
(A, Z-1)
Kettős béta-bomlás A mag két elektront és két antineutrínót bocsát ki
(A, Z+2)
Kettős elektronbefogás A mag elnyel két héjelektront és kibocsát két neutrínót
(A, Z-2)
Elektronbefogás pozitronemisszióval A mag elnyel egy héjelektront és kibocsát egy pozitront és két neutrínót
(A, Z-2)
Kettős pozitronemisszió A mag kibocsát két pozitront és két neutrínót
(A, Z-2)
Átmenetek a mag két azonos összetételű állapota között
Gamma-bomlás A gerjesztett mag kibocsát egy nagy energiájú gamma-fotont (gamma-sugárzás)
(A, Z)
Belső konverzió A gerjesztett mag energiát ad át egy héjelektronnak, mely kilökődik az atomból
(A, Z)

Aktivitás[szerkesztés | forrásszöveg szerkesztése]

Egy adott radioaktív forrás aktivitása megmondja, hogy hány bomlás történik másodpercenként. Mértékegysége a Bq (Henri Becquerel tiszteletére), 1 Bq másodpercenként egy bomlásnak felel meg. Régebbi mértékegység a Ci (Curie), 1 Ci egy gramm rádium aktivitásának felel meg (3,7·1010 Bq). A radioaktív bomlás teljesen véletlen jelenség, egy adott atommagról nem lehet megállapítani, hogy mikor fog elbomlani, viszont az elbomlásának időbeni valószínűsége állandó. Egy forrásban a bomlások száma tehát arányos a radioaktív magok számával, amit a következőképp írhatunk föl:
A= - \frac{\ dN}{dt} = \lambda \ N
Ezt integrálva kapjuk a bomlási törvényt:
N\left(t\right) = N_0e^{-\lambda t}
Látható, hogy a radioaktív magok száma exponenciálisan csökken. A λ a bomlásállandó: megadja, hogy mekkora valószínűséggel bomlik el egy atommag egy másodperc alatt. Többet használják viszont a T1/2 felezési időt: ez megadja, hogy mennyi idő alatt bomlik el az összes radioaktív mag fele. A bomlásállandóból a következőképp lehet kifejezni:
T_{1/2} = \frac{\ln 2}{\lambda}
Ha ismerjük egy izotóp felezési idejét, akkor egy adott forrás A aktivitása könnyen meghatározható:
A = \frac{\ln 2}{T_{1/2}} N

Radioaktív atommagok[szerkesztés | forrásszöveg szerkesztése]

  • elsődleges természetes radionuklidok (1)
    • olyan természetes radioaktív magok, amelyek megtalálhatóak a Naprendszer keletkezése óta
    • felezési idejük nagyon hosszú
    • 26 ilyen mag ismert. Például: 238U ( T=4,47·109 év ), 40K ( T=1,28·109 év ), 87Rb ( T=4,8·1010 év )
  • másodlagos természetes radionuklidok (2)
    • Olyan magok, amelyek (1) bomlása révén keletkeznek
    • Felezési idejük nagyon rövid, a Naprendszer keletkezése óta nem találhatóak meg
    • 38 ilyen mag ismert. Például: 226Ra (T=1600 év), 234Th (T=24,1 nap)
  • Indukált természetes radionuklidok (3)
    • állandóan keletkeznek a kozmikus sugárzás hatására
    • 10 ilyen mag ismert. Például: 3H (T=12,3 év), 14C (T=5730 év)
  • mesterséges radionuklidok (4)
    • emberi tevékenység során keletkeztek, a természetben nincsenek számottevően jelen
    • 2000 ilyen mag ismert 60Co, 137Cs, 24Na

Legfontosabb radioaktív atommagok[szerkesztés | forrásszöveg szerkesztése]

A periódusos rendszer radioaktív elemei[szerkesztés | forrásszöveg szerkesztése]

A periódusos rendszerben jelenleg 117 elemet ismerünk. Ebből 36 elemnek nincs stabil izotópja. Ezek az alábbi elemek:

Biológiai hatásai[szerkesztés | forrásszöveg szerkesztése]

A radioaktív anyagok jele.

Hogy a sugárzás biológiai hatásait objektíven felmérhessük, megfelelő fizikai mennyiségeket kell definiálni. Így vezették be a dózist, ami a sugárzásból 1 kg anyag által elnyelt energia mennyisége. Mértékegysége a Gray (1 Gy = 1 J/kg). A régi mértékegység a rad (1 rad = 0,01 Gy).

Kísérletileg igazolt tény, hogy a radioaktív sugárzás hatása élő szervezetekre nagymértékben függ a fajtájától és az energiájától. Adott energiájú alfa-részecske több kárt okoz, mint egy ugyanakkora energiájú elektron, vagy egy foton. A különbség a lineáris energiaveszteség (dE/dx) különbözőségében rejlik. Például egy alfa-részecske az energiáját fémben 1 mikrométer alatt adja le, míg ehhez egy gamma-fotonnak akár több centiméterre is szüksége lehet. Emiatt minden fajta sugárzáshoz egy koefficienst rendelünk – a biológiai hatásosságot (RBE – Relative Biological Effectivity). A dózis és a biológiai hatásosság szorzata az ekvivalens dózis, aminek a mértékegysége a sievert (Sv).

A radioaktív sugárzás hatása azonban az érintett szerv típusától is függ. Minden szervhez egy koefficiens tartozik, ami nem függ a sugárzás fajtájától és energiájától. Így az effektív dózis (egy adott szervre) egyenlő az ekvivalens dózis és a szerv koefficiensének szorzatával.

Egy ember átlagosan évi 2,5 mSv dózist nyel el. Okai a levegőben lévő radon, a kozmikus sugárzás, röntgenvizsgálatok stb. Fontos kiemelni, hogy a legnagyobb része (2 mSv) természetes forrásból származik.

A bomlási sorok[szerkesztés | forrásszöveg szerkesztése]

A radioaktív bomlás során egy kémiai elemből (anyaelemből) egy új elem (leányelem) jön létre. Előfordulhat, hogy ez utóbbi is radioaktív, így újabb bomlás történik. Ez a folyamat addig tart, amíg egy stabil elemhez nem érünk. Ezt nevezik bomlási sornak. A radioaktív bomlás során a tömegszám vagy néggyel csökken (az alfa-bomlás esetében), vagy nem változik (a béta-bomlás és gamma-bomlás esetében). Ezért négy bomlási sor létezik attól függően, hogy a tömegszám négyes osztású maradéka 0, 1, 2 vagy 3. Ebből a négy bomlási sorból csak az a 3 maradt meg, amelyeknél a leghosszabb felezési idejű izotóp felezési ideje nagyságrendileg összemérhető a Föld életkorával (U-238, U-235 és a Th-232). A negyedik (neptúnium) anyaelemének bomlási ideje kétmillió év, így ez ma már csak mesterséges eredetből található meg a Földön.

238U-család, (zárójelben a felezési idők):
238U (4,468·109 év), 234Th (24,1 nap), 234Pa (6,70 óra), 234U (245 500 év), 230Th (75 380 év), 226Ra (1602 év), 222Rn (3,8235 nap), 218Po (3,10 perc), 214Pb (26,8 perc) és 218At (1,5 s), 214Bi (19,9 perc) illetve 218Rn (35 ms), 214Po (164,3 µs) és 210Tl (1,30 perc), 210Pb (22,3 év), 210Bi (5,013 nap), 210Po (138,376 nap) és 206Tl (4,199 perc), 206Pb (stabil).

235U-család, (zárójelben a felezési idők):
235U (7,04·108 év), 231Th (25,52 óra), 231Pa (32 760 év), 227Ac (21,772 év), 227Th (18,68 nap), 223Fr (22,00 perc), 223Ra (11,43 nap), 219Rn (3,96 s), 215Po (1,781 ms), 211Pb (36,1 perc) és 215At (0,1 ms), 211Bi (2,14 perc), 207Tl (4,77 perc) és 211Po (516 ms), 207Pb (stabil)

232Th-család, (zárójelben a felezési idők):
232Th (1,405·1010 év, 228Ra (5,75 év), 228Ac (6,25 óra), 228Th (1,9116 év), 224Ra (3,6319 nap), 220Rn (55,6 s), 216Po (0,145 s), 212Pb (10,64 óra), 212Bi (60,55 perc), 212Po (299 ns) és 208Tl (3,053 perc), 208Pb (stabil)

237Np-család, (zárójelben a felezési idők): 237Np (2,14·106 év), 233U (1,592·105 év), 229Th (7,34·104 év), 225Ra (14,9 nap), 225Ac (10,0 nap), 221Fr (4,8 perc), 217At (32 ms), 213Bi (46,5 perc), 209Tl (2,2 perc), 209Pb (3,25 óra), 209Bi (1,9·1019 év), 205Tl (stabil)

Alkalmazása[szerkesztés | forrásszöveg szerkesztése]

Kormeghatározás[szerkesztés | forrásszöveg szerkesztése]

Élőlények maradványainak a korát a bennük található radioaktív 14C izotóp (a felezési ideje 5560 év) koncentrációjából lehet meghatározni. A magas légkörben folyamatosan keletkező 14C izotóp (radiokarbon) beépül az élő szervezetbe. Az élőlény kimúlása után az anyagcsere megszűnik, és a 14C/12C izotóparány csökkenni kezd, mivel a kémiai tulajdonságokat meghatározó rendszám azonos, ezért az arány csupán a bomlás miatt változik meg. A maradványból kinyert szén megváltozott izotópösszetételéből következtetni lehet a maradvány korára. Ez a módszer kb. 40-50 ezer évig használható durván 10%-os pontossággal (ezen idő elteltével a 14C szinte teljesen eltűnik a maradványból).

Megjegyzés: bizonyos korrekciókkal a radiometrikus kormeghatározás pontossága nagymértékben növelhető, de ennek feltételei nem mindig teljesülnek. A radiokarbonos módszerhez pl. kiváló kalibrációs lehetőséget adnak a fák évgyűrűinek elemzései.

Más radionuklidokkal más korszakokat lehet vizsgálni (például: a 235U/238U arányból is meg lehet állapítani a Föld korát).

Borok és egyes elzárt vízrétegek korát a bennük lévő trícium arányából határozzák meg.

Nyomjelzés[szerkesztés | forrásszöveg szerkesztése]

A radioaktív nyomkövetés vagy nyomjelzés, amelyet Hevesy György dolgozott ki, a következőn alapszik: a rendszerben levő bizonyos elem egy részét ugyanazon elem radioaktív izotópjára cseréljük. Ettől kezdve különböző detektorokkal lehet követni az elem mozgását a rendszerben. Ily módon a pajzsmirigy működését, (a pajzsmirigybe radioaktív jódot viszünk), az erek átjárhatóságát, a növények tápanyagcseréjét (radioaktív foszforral) lehet vizsgálni.

Az izotópos füstjelző berendezések működésének elve, hogy a kis áthatoló képességű alfa-részecske a levegőben lebegő szilárd részecskéken (magyarul füst) nagy mértékben elnyelődik, így az átfolyó áram hirtelen lecsökken.

Megjegyzés: Az alfa-részecske kétszeresen pozitív, de nem sugárzó izotóp. Az aktív izotóp bocsájtja ki az alfa részecskét, így az izotóp felezési idejétől függően, hosszú ideig egy állandó átfolyó áramot tart fenn. Ezt a tulajdonságát használják ki a pacemakerekben, hiszen így a beteget nem kell maximum 5-10 évente egy nyílt mellkas műtétnek kitenni, amit egy normál elem cseréje okozna.

Nukleáris erőművek[szerkesztés | forrásszöveg szerkesztése]

Az atomerőművek központi része az atomreaktor ahol a kontrollált láncreakció zajlik.

Források[szerkesztés | forrásszöveg szerkesztése]


Külső hivatkozások[szerkesztés | forrásszöveg szerkesztése]