„Madarak” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
384. sor: 384. sor:
A madarak néha más, nem madár fajokkal is társulnak. A tengeri madarak gyakran vadásznak együtt delfinekkel és tonhalakkal, így a zsákmányhalaknak egyik irányból sincs menekvés.<ref name = "AU">{{Cite journal|last=Au |first=David W. K. |date=1 August 1986|title=Seabird interactions with Dolphins and Tuna in the Eastern Tropical Pacific |journal=The Condor |volume=88 |issue=3 |pages=304–17 |url=http://sora.unm.edu/sites/default/files/journals/condor/v088n03/p0304-p0317.pdf |doi=10.2307/1368877|format=PDF |author2=Pitman}}</ref> A [[szarvascsőrűmadár-félék]] a [[közönséges törpemongúz]]zal társulnak, és együtt keresnek táplálékot, és kölcsönösen figyelmeztetik egymást a veszélyre.<ref>{{Cite journal|last=Anne |first=O. |date=June 1983 |title=Dwarf mongoose and hornbill mutualism in the Taru desert, Kenya |journal=Behavioral Ecology and Sociobiology |volume=12 |issue=3 |pages=181–90 |doi=10.1007/BF00290770 |last2=Rasa |first2=E.}}</ref>
A madarak néha más, nem madár fajokkal is társulnak. A tengeri madarak gyakran vadásznak együtt delfinekkel és tonhalakkal, így a zsákmányhalaknak egyik irányból sincs menekvés.<ref name = "AU">{{Cite journal|last=Au |first=David W. K. |date=1 August 1986|title=Seabird interactions with Dolphins and Tuna in the Eastern Tropical Pacific |journal=The Condor |volume=88 |issue=3 |pages=304–17 |url=http://sora.unm.edu/sites/default/files/journals/condor/v088n03/p0304-p0317.pdf |doi=10.2307/1368877|format=PDF |author2=Pitman}}</ref> A [[szarvascsőrűmadár-félék]] a [[közönséges törpemongúz]]zal társulnak, és együtt keresnek táplálékot, és kölcsönösen figyelmeztetik egymást a veszélyre.<ref>{{Cite journal|last=Anne |first=O. |date=June 1983 |title=Dwarf mongoose and hornbill mutualism in the Taru desert, Kenya |journal=Behavioral Ecology and Sociobiology |volume=12 |issue=3 |pages=181–90 |doi=10.1007/BF00290770 |last2=Rasa |first2=E.}}</ref>
===Pihenés===
===Pihenés===
Gyors anyagcseréjük miatt a madarak az aktív napszakukban is alszanak időnként. Alvás közben néha rövid időre kinyílik a szemük, hogy szemrevételezzék a környezetet, nincs-e veszély.<ref>{{Cite journal|last=Gauthier-Clerc |first=Michael |year=2000 |title=Sleep-Vigilance Trade-off in Gadwall during the Winter Period |journal=The Condor |volume=102 |issue=2 |pages=307–13 |url=http://sora.unm.edu/sites/default/files/journals/condor/v102n02/p0307-p0313.pdf |archiveurl=https://web.archive.org/web/20041227194439/http://sora.unm.edu/sites/default/files/journals/condor/v102n02/p0307-p0313.pdf |archivedate=27 December 2004 |doi=10.1650/0010-5422(2000)102[0307:SVTOIG]2.0.CO;2|format=PDF |last2=Tamisier |first2=Alain |last3=Cézilly |first3=Frank|jstor=1369642}}</ref> Úgy tudják, hogy a [[sarlósfecskefélék]] repülés közben is tudnak aludni, és radarmegfigyelések szerint a magasságcsökkenést a széllel szembe fordulva ellensúlyozzák.<ref>{{Cite journal|journal=The Journal of Experimental Biology|volume=205|pages=905–910|date=1 April 2002|title=Harmonic oscillatory orientation relative to the wind in nocturnal roosting flights of the swift ''Apus apus''|first=Johan|last=Bäckman|url=http://jeb.biologists.org/cgi/content/full/205/7/905|pmid=11916987|issue=7|author2=A}}</ref> Egyes alvástípusok alkalmasak lehetnek arra, hogy a madarak repülés közben is pihenhessenek. Egyes fajoknál kimutatták, hogy agyféltekéik külön is tudnak aludni. Ezt a képességüket a rajban elfoglalt helyükhöz képest használhatják ki, mivel így az éber féltekéhez tartozó szem a kívülről érkező veszélyeket figyelheti. Tengeri emlősöknél is ismert hasonló adaptáció. A madarak gyakran összegyűlnek éjszakára, aminek céljai a hatékony hőszabályozás és védekezés. A gyülekezőhelyet is ennek megfelelően választják. Izzadságmirigyek híján különféleképpen hűtik magukat, például árnyékba húzódnak, vízbe állnak, kitárják szárnyukat, vagy levizelik magukat.
Gyors anyagcseréjük miatt a madarak az aktív napszakukban is alszanak időnként. Alvás közben néha rövid időre kinyílik a szemük, hogy szemrevételezzék a környezetet, nincs-e veszély.<ref>{{Cite journal|last=Gauthier-Clerc |first=Michael |year=2000 |title=Sleep-Vigilance Trade-off in Gadwall during the Winter Period |journal=The Condor |volume=102 |issue=2 |pages=307–13 |url=http://sora.unm.edu/sites/default/files/journals/condor/v102n02/p0307-p0313.pdf |archiveurl=https://web.archive.org/web/20041227194439/http://sora.unm.edu/sites/default/files/journals/condor/v102n02/p0307-p0313.pdf |archivedate=27 December 2004 |doi=10.1650/0010-5422(2000)102[0307:SVTOIG]2.0.CO;2|format=PDF |last2=Tamisier |first2=Alain |last3=Cézilly |first3=Frank|jstor=1369642}}</ref> Úgy tudják, hogy a [[sarlósfecskefélék]] repülés közben is tudnak aludni, és radarmegfigyelések szerint a magasságcsökkenést a széllel szembe fordulva ellensúlyozzák.<ref>{{Cite journal|journal=The Journal of Experimental Biology|volume=205|pages=905–910|date=1 April 2002|title=Harmonic oscillatory orientation relative to the wind in nocturnal roosting flights of the swift ''Apus apus''|first=Johan|last=Bäckman|url=http://jeb.biologists.org/cgi/content/full/205/7/905|pmid=11916987|issue=7|author2=A}}</ref> Egyes alvástípusok alkalmasak lehetnek arra, hogy a madarak repülés közben is pihenhessenek.<ref>{{Cite journal|last=Rattenborg|first=Niels C. |year=2006 |title=Do birds sleep in flight? |journal=Die Naturwissenschaften |volume=93 |issue=9 |pages=413–25 |doi=10.1007/s00114-006-0120-3|pmid=16688436}}</ref> Egyes fajoknál kimutatták, hogy agyféltekéik külön is tudnak aludni. Ezt a képességüket a rajban elfoglalt helyükhöz képest használhatják ki, mivel így az éber féltekéhez tartozó szem a kívülről érkező veszélyeket figyelheti. [[Tengeri emlősök]]nél is ismert hasonló adaptáció.<ref>{{Cite journal|last=Milius |first=S. |date=6 February 1999|title=Half-asleep birds choose which half dozes |journal=Science News Online |volume=155 |issue= 6|page=86 |doi=10.2307/4011301 |jstor=4011301 }}</ref> A madarak gyakran összegyűlnek éjszakára, aminek céljai a hatékony hőszabályozás és védekezés.<ref>{{Cite journal|last=Beauchamp |first=Guy |year=1999 |title=The evolution of communal roosting in birds: origin and secondary losses |journal=Behavioural Ecology |volume=10 |issue=6 |pages=675–87 |url=http://beheco.oxfordjournals.org/cgi/content/full/10/6/675 |doi=10.1093/beheco/10.6.675 }}</ref> A gyülekezőhelyet is ennek megfelelően választják. Izzadságmirigyek híján különféleképpen hűtik magukat, például árnyékba húzódnak, vízbe állnak, kitárják szárnyukat, vagy levizelik magukat.<ref>{{Cite journal|last=Buttemer |first=William A.|year=1985 |title=Energy relations of winter roost-site utilization by American goldfinches (''Carduelis tristis'') |journal=[[Oecologia]] |volume=68 |issue=1 |pages=126–32 |url=http://deepblue.lib.umich.edu/bitstream/2027.42/47760/1/442_2004_Article_BF00379484.pdf |doi=10.1007/BF00379484 |format=PDF}}</ref>


Sok madár alvás közben nyakát a hátára hajtja, és csőrét a háttollak közé fúrja, míg más fajok a melltollaik közé dugják csőrüket. Sok madár fél lábon alszik, míg mások mindkét lábukat a tollaik közé rejtik, különösen hideg időben. Az énekesmadarak lába reflexesen zárul a gally körül alvás közben. Néhány nagyobb madárfaj, mint a [[fürj]] és a [[fácán]] éjszakára felgallyaz, vagyis fára települ alváshoz. Néhány kolibrifaj anyagcseréje jelentősen lelassul éjszakára. Ez több száz faj esetén megtörténik, így a [[kuvikfecskealakúak]], az [[Artamus]] fajok és a [[lappantyúfélék]] esetén is. A [[téli estifecske]] hibernálódik.
Sok madár alvás közben nyakát a hátára hajtja, és csőrét a háttollak közé fúrja, míg más fajok a melltollaik közé dugják csőrüket. Sok madár fél lábon alszik, míg mások mindkét lábukat a tollaik közé rejtik, különösen hideg időben. Az énekesmadarak lába reflexesen zárul a gally körül alvás közben. Néhány nagyobb madárfaj, mint a [[fürj]] és a [[fácán]] éjszakára felgallyaz, vagyis fára települ alváshoz. Néhány kolibrifaj anyagcseréje jelentősen lelassul éjszakára. Ez több száz faj esetén megtörténik, így a [[kuvikfecskealakúak]], az [[Artamus]] fajok és a [[lappantyúfélék]] esetén is. A [[téli estifecske]] hibernálódik.

A lap 2017. március 20., 21:02-kori változata

Madarak
Evolúciós időszak: Késő jura–Jelen
[1]
Kék cinege (Parus caeruleus)
Kék cinege (Parus caeruleus)
Rendszertani besorolás
Ország: Állatok (Animalia)
Törzs: Gerinchúrosok (Chordata)
Altörzs: Gerincesek (Vertebrata)
Csoport: Hüllőszerűek (Sauropsida)
Osztály: Madarak (Aves)
Rendek

30 rend, több mint 9900 ismert faj

Hivatkozások
Wikifajok
Wikifajok

A Wikifajok tartalmaz Madarak témájú rendszertani információt.

Commons
Commons

A Wikimédia Commons tartalmaz Madarak témájú médiaállományokat és Madarak témájú kategóriát.

A madarak (Aves) meszes héjú tojással szaporodó, meleg vérű gerinces állatok. Mellső végtagjaik szárnyakká módosultak. A madárfajok nagy része ma is repülő életmódot folytat. Testüket tolltakaró borítja, csontjaik üregesek, légzsákokat tartalmaznak; ettől erősek, de könnyűek. Fogak helyett csőrük van. Méretük az 5 cm-es méhkolibritől a 2,75 m-es struccig terjed.

A madarak mintegy 10 ezer fajjal a gerincesek második legnépesebb osztálya. Ennek több, mint fele énekesmadár. Ebből Magyarországon közel 400 faj fordul elő. Az utolsó túlélő szauridák.

Több madárfaj is fontos az ember számára; ezek egy része háziasított. Táplálékot (hús, tojás) és nyersanyagot (toll) biztosítanak. Egyes fajokat házikedvencként tartanak. Egyes fajok ürülékével trágyáznak (guanó). Az ember tevékenysége miatt a 17. századig több száz, a 17. századtól 100-120 faj halt ki, és további 1200 faj veszélyeztetett. Megfigyelésük az ökoturizmus fontos része.

Törzsfejlődés

Fő cikk: Dinoszaurusz–madár kapcsolat
Lásd még: A madarak evolúciója

Rokonság

Kőlap fosszilis csontokkal és tollenyomatokkal
Az Archaeopteryx lithographica fajt gyakran tekintik a legrégibb valódi madárnak

A madarakat először Francis Willughby és John Ray rendszerezte 1676-ban kiadott Ornithologiae művükben.[2] Carl Linnaeus ezt felhasználva alkotta meg saját rendszerét 1758-ban.[3] Az ő nyomán a madarakat osztályként tartják nyilván, filogenetikailag a Theropoda kládba sorolhatók.[4]

A madarak és testvércsoportjuk, a krokodilok az Archosauria klád ma is élő tagjai. Az 1990-es évek végéig az Archaeopteryx lithographica összes utódját a madarak közé sorolták.[5] Jacques Gauthier inkább csak a modern madarakat tekintette valódi madárnak, és a csak fosszíliákból ismert fajokat a madarakkal együtt a bővebb Avialae csoportba sorolta.[6] Ezzel elkerülte az Archaeopteryx körüli bizonytalanságot. A 21. században ez az osztályozás terjedt el.

Gauthier[7] négyféle meghatározást adott a madarakra. Ezzel azonban az a probléma, hogy nem ugyanazok a fajok tartoznak oda. Továbbá azt javasolta, hogy a madarakat a ma élő összes madár közös ősétől számítsák. Az általa meghatározott csoportok:

  • Tollas archosaurusok (Avifilopluma)
  • Röpképes archosaurusok (Avialae)
  • Azok az archosaurusok, amelyek közelebb állnak a ma élő madarakhoz, mint a krokodilokhoz (Avemetatarsalia [=Panaves])
  • A ma élő madarak legközelebbi közös ősének leszármazottai (Neornithes)



Krokodilok



Madarak




Teknősök




Gyíkok, beleértve a kígyókat (pikkelyes hüllők)


A madarak filogenetikai rokonsága a ma is élő hüllőkkel

A negyedik definíció szerint az Archaeopteryx nem tartozik a madarak közé. Gauthier javaslatát a legtöbb peleontológus és a madarak evolúciójával foglalkozó szakértők is elfogadták, habár pontos meghatározás nincs. A kutatók gyakran az Avialae tudományos névvel illetett csoportot nevezik madaraknak.[8]

Az Avialae a legtöbb kutató szerint ág alapú klád, habár a meghatározások eltérnek egymástól. Sok szerző értelmezésében azok a theropodák, amelyek közelebb állnak a madarakhoz, mint a Deinonychushoz.[9][10] Néha testi jellemzők alapján különítik el a kládot. Jacques Gauthier 2001-ben új definíciót adott: tollas lények, akik legalább siklórepülésre (voltak) képesek, köztük a tőlük leszármazó madarakkal.[7][11]

Kapcsolat a dinoszauruszokkal

Paraves

Sablon:ExtinctScansoriopterygidae




Sablon:ExtinctEosinopteryx


Eumaniraptora

Jinfengopteryx



Aurornis



Dromaeosauridae



Troodontidae



Avialae





Kladogram Cau et al., 2015 filogenetikai eredményei alapján[12]

A madarak az Archosauriák fejlődési irányához tartozó hüllőmedencéjű dinoszauruszok (Saurischia) egy csoportjának (Theropoda) ágából alakultak ki. A valódi madarak a kréta korban, 100 millió évvel ezelőtt jelentek meg.[13] DNS-elemzések szerint nagyobb mértékben a többi dinoszaurusz kihalása után terjedtek el a déli kontinensről világszerte. Fajszámuk különösen a globális jégkorszakok alatt gyarapodott.[14] Primitív madárszerű dinoszauruszok a középső juráig visszakövethetők. A tollas dinoszauruszokból alakult ki a legkorábbi ismert madárszerű lény, az Archaeopteryx. Ezek még nem repültek jól, és őseik testfelépítéséből még megőrizték a fogakkal teli állkapcsot, és a hosszú csontos farkat.[15][16]

A fosszíliák tanúsága és a biológiai bizonyítékok miatt a legtöbb tudós a madarakat specializálódott theropodáknak tartja.[17] Speciálisabban, a Maniraptora csoport része; ide tartoznak többek között a dromaeosauruszok és az oviraptoridák is.[18] Ahogy egyre több, madárhoz hasonló theropoda került elő, elmosódtak a határok a madarak és rokonaik között. Északkelet-Kínában Liaoning tartományban a sok apró tollas theropoda került elő, ami tovább növelte a kétséget.[19][20][21]

Fehér kőlap törésekkel és madártollak és csontok lenyokatával, köztük hosszú páros faroktollakkal
Confuciusornis sanctus, egy kréta kori madár Kínából

A paleontológia 2010-es évekbeli állása szerint a repülő theropodák, azaz avialanok a deinonychosaurusok legközelebbi rokona, és magukba foglalják a dromaeosauridákat és a troodontidákat is.[22] Ezek együtt alkotják a Paraves csoportját. Több emblematikus tag, mint a Microraptor, olyan jellemzőkkel bír, amelyek lehetővé tették számukra legalább a siklórepülést. A legtöbb emblemetaikus tag kis termetű volt. Ez felveti azt a lehetőséget, hogy a paravianok közös őse fán élt, és képes volt a siklórepülésre.[23][24] Az Archaeopteryxtől és a nem-avialan theropodáktól eltérően az első avialan fajok nem ragadozók vagy dögevők, hanem mindenevők voltak.[25]

Az Archaeopteryx a 19. században az egyik megkerült hiányzó láncszemnek és az evolúció egyik bizonyítékának számított. Ez volt az első lelet, amin látszódtak még a hüllők jellegzetességei: fogak, karmos mellső ujjak, hosszú, hóüllőszerű farok, és a modern madarakhoz hasonló tollas szárnyak. Ma már nem tekintik a madarak közös ősének, de hozzá közel állónak igen.[26]

Az első madárszerű állatok

Avialae

Anchiornis




Archaeopteryx




Xiaotingia




Rahonavis





Jeholornis



Jixiangornis



Euavialae

Balaur


Avebrevicauda

Zhongjianornis




Sapeornis


Pygostylia

Sablon:ExtinctConfuciusornithiformes





Protopteryx



Pengornis




Ornithothoraces












Kladogram Cau et al., 2015 filogenetikai eredményei alapján[12]

A legkorábbi avialan fosszíliákat Kínában, a Tiaojishan Formációban fedezték fel, és a jura szakaszára datálták, 160 millió évvel ezelőttre.[8] Az ismert akkori avialan fajok: Anchiornis huxleyi, Xiaotingia zhengi, és Aurornis xui. A jól ismert Archaeopteryx valamivel későbbi, 155 millió éves, és Németországban találták. Az ősi, dinoszauruszokra utaló jegyek mellett még további jellegzetességeik voltak, mint a második lábujj karma, ami sosem érintette a földet; és a hosszú tollak, amikkel a levegőben manővereztek.[27]

Az avialan fajokból sok különböző forma alakult ki a kréta korban.[28] Több csoport megtartotta a korai jegyeket, míg más csoportok elvesztették ezek egyikét-másikát. Így például a Pygostylia csoportban megrövidült a farok, és létrejött a pygostyle csont.[28] A késői krétában 95 millió évvel ezelőtt a modern madaraknak őseinek megjavult a szaglása.[29]

A korai madárősök sokfélesége

Ornithothoraces

Enantiornithes


Euornithes

Archaeorhynchus


Ornithuromorpha

Patagopteryx



Vorona




Schizooura




Hongshanornithidae




Jianchangornis




Songlingornithidae




Gansus




Apsaravis


Ornithurae

Sablon:ExtinctHesperornithes




Ichthyornis




Vegavis



Aves














Egyszerűsített mezozoós madár filogenia Wang et al. szerint, 2015-ös filogenetikai elemzés alapján[30]

A rövid farkúakból kialakultak az enantiornithesek, melyek vállcsontjainak szerkezete fordított volt a modern madarakéhoz képest. Ők voltak az első változatos csoport a rövid farkúak közül. Sokféle ökológiai nichét foglaltak el, a homokban gázolóktól és halevőktől a falakó magevőkig. A kréta korban ők voltak a legelterjedtebb madárszerűek, azonban a kor végén kihaltak.[28]

A másik ág, az Euornithes vízi vagy félig vízi életmódot folytattak, halakkal és más kisebb vízi élőlényekkel táplálkoztak; gázló, úszó és búvár fajaik voltak. Ide tartoztak a sirályszerű Ichthyornis,[31] és a röpképtelenné vált Hesperornithiformes, amelyek tengerekben halásztak.[28] Az enantiornithesek ezzel szemben a szárazföldön terjedtek el.[32] A modern madarak irányába mutat a csőr kifejlődése és a fogak elvesztése, habár voltak csoportjaik, amelyek megőriztek néhány hátsó fogat.[33] Emellett mellcsontjukon taraj alakult ki. Farkcsontjuk mozgékonnyá vált, amivel a farok is szabadabban mozgott,[34] és lehetővé tette a repülés közbeni manőverezést.[27]

Modern madarak

Aves  
Palaeognathae 

Struthioniformes



Tinamiformes



 Neognathae 
 

Tarajos szegycsontúak (Neoaves)


Galloanserae 

Anseriformes



Galliformes





A modern madarak főbb csoportjai
Sibley-Ahlquist taxonómiája szerint

A modern madarakat és őseiket az Aves, más néven Neornithes néven foglalják össze, aminek két ága a futómadarak (Palaeognathae), ahova az olyan röpképtelen fajok tartoznak, mint a strucc, és az olyan rosszul repülők, mint a tinamuk; és a tarajos szegycsontúak (Neognathae), ahová a többi madarat sorolják.[4] Ezeket többnyire nagyrendnek vagy alosztálynak tekintik,[35] de Livezey és Zusi cohorsként tartja számon.[4] A rendszertani nézőponttól függően a modern madarak ismert fajainak száma 9800[36] és 10050 között változik.[37]

A neognath kacsák késő krétában élt Vegavis faja nyomán a madarak már a kréta kor végén több ágra váltak szét.[38] Alaktani elemzések szerint a modfern madarak valamivel a legkorábbi fosszíliák előtt, a kréta kor közepén jelentek meg.[15]

Az ágak közül először a Galloanserae vált le, ami a lúdalakúak és a tyúkalakúak öregrendje. Valószínűleg tőlük származik a valódi madarak első fosszíliája is 85 millió évvel ezelőttről, az Austinornis lentus fajtól.[39] Az újabb szétválások időpontjai vitatottak; a kutatók csak abban értenek egyet, hogy az első Galloanserae fajok a késő krétabeli dinoszauruszok kortársai voltak. Abban viszont nincs egyetértés, hogy a többi faj mikor és milyen úton terjedt el.[40] A bizonyítékok ellentmondásosak; a molekuláris elemzések szerint még a kréta kor végén, míg a leletek szerint csak a kainozoikum alatt; ez vitathatóvá teszi az összes eredményt.[40][41] Mindenesetre az újabb eredmények azt mutatják, hogy a kréta kor végi kihalást csak kevés faj élte túl, és ezekből származik a mai madarak egy népes csoportja.[42]

Elterjedésük

Világosszürke begyű és hasú madár mintás szármmyal és fejjel betonon áll.
A házi veréb elterjedési területe nagyot bővült az emberi tevékenység következtében[43]

A madarak jelen vannak a hét kontinens legtöbb szárazföldi élőhelyén, egészen a hóhojsza költőtelepeiig, amelyek az Antarktiszon 440 kilométerre vannak a tengertől.[44] A fajok a trópusi területeken a legváltozatosabbak. Korábban úgy gondolták, hogy ennek oka az erősebb fajképződés, azonban azóta kiderült, hogy a fajképződés inkább a magasabb szélességeken gyorsabb, mivel ott nagyobb a fajkihalás is.[45] A szárazföldek mellett a vizeken is élnek, egyes családok még az óceánokban is előfordulnak. Némely tengerlakó faj csak költeni megy a partra,[46] és néhány pingvinfaj akár 300 méterre is lemerül az óceánban.[47]

Sok madárfaj az ember segítségével terjedt el. Ez lehetett akaratlagos, vadnak (fácán)[48] vagy véletlen, elszabadult díszállatként, mint a barátpapagáj Észak-Amerika egyes városaiban.[49] Néhány faj hasznot húzott az ember tevékenységéből, így a pásztorgém,[50] a pásztorkarakara,[51] vagy a rózsás kakadu, és elszaporodott a mezőgazdasági területeken[52] vagy a városokban.

Testfelépítés

A madarak, bár igen változatos állatcsoport, testfelépítés szempontjából viszonylag egységesek. Más gerincesekhez képest több szokatlan jellegzetességgel bírnak, amelyek elsősorban a repülőképesség kialakulásához kapcsolódnak.

Lásd még: a madarak anatómiája

Idegrendszer, érzékelés

A madarak idegrendszere viszonylag nagy.[53] Az agy mozgással foglalkozó kérgében a repülést irányító rész a legnagyobb. A kisagy vezérli a pontos mozgásokat, míg a nagyagy a komplex viselkedésmintákat, például a tájékozódást, az udvarlást és a fészeképítést. Az idegrendszer egyes részeinek megnevezése új terminológiát igényelt, mivel a madáragy másként épül fel, mint az emlősöké.[54] Az 1990-es évek óta végzett vizsgálatok szerint a madarak értelmesebbek, mint ahogy azt korábban gondolták.

A madáragyra jellemző a sok apró idegsejt; térfogatához és tömegéhez képest sok sejtből áll. Az intelligensebb fajok (énekesmadarak, papagájok) agya tömegarányosan sokkal több sejtet tartalmaz, mint az emlősöké, a főemlősöket is beleértve. Testtömeghez képest az idegsejtek száma magasabb, mint a legtöbb emlősben, a főemlősöket kivéve. Például a sárgafejű királyka testtömege kilencede egy egérének, mégis kétszer annyi idegsejtje van. Az idegsejtek a nagyagyban, különösen a nagyagy kérgében helyezkednek el sűrűn, ami énekesmadaraknál és papagájoknál három-négyszer annyi idegsejtet jelent, mint a főemlősökben. A madárfajok között óriási a különbség az agy viszonylagos méretét illetően. A bankivatyúk testtömege ötvenszerese a széncinegének, mégis ugyanannyi neuronja van. De még a tyúkalakúak és a struccok esetén is akkora az idegsejtek sűrűsége, mint a főemlősöknél. A papagájok és az énekesmadarak nagy agya az utódgondozásnak köszönhető. A fejlettebb utódgondozás, mint feladat egy összetett viselkedésminta lehetővé teszi, hogy a fiókák agya is nagyra nőjön.[55]

Látás

A madarak látása általánosságban jól fejlett. A vízimadarak szemlencséje képes egyaránt alkalmazkodni a víz alatti és a víz feletti viszonyokhoz, és éles látást biztosítani.[53] Egyes fajoknak két sárgafoltja van. Négyféle csaptípusuk van, a vörös, zöld, kék mellett ultraibolya fényt észlelő csapjaik is vannak (tetrakromázia).[56] Az ultraibolya fény látása segíti őket a táplálékszerzésben és a párkeresésben is. A szem mellett agyukban is vannak fényérzékeny sejtek, amelyek észlelik a nappalok hosszának változását, és vezérlik az évszaknak megfelelő viselkedést.[57]

Egyes madárfajok, például a kék cinke tollazata ultraibolya mintákat is mutat. Ez segíti a nemek megkülönböztetését. A hím udvarlás közben ezeket mutatja különböző pózok felvételével és a tollak felborzolásával. A sólymok a rágcsálók által hagyott vizeletjelzések segítségével találják meg zsákmányukat. A galambok és néhány más faj kivételével a madarak nem a szemhéjukkal, hanem pislogóhártyával pislognak, ami vízszintesen mozog. Vízimadarak ezt kontaktlencseként használják a vízben. A madarak szemében a fésűszerv gondoskodik a tápanyagellátásról és szabályozza az üvegtest kémhatását. A legtöbb madár nem tudja mozgatni a szemét; ha máshova akar nézni, akkor a fejét kell elmozdítania. Ez alól csak néhány kivétel van, például a kormorán. Azok a madarak, amelyeknek oldalt van a szemük, fejük elfordítása nélkül is látnak hátrafelé; azok a madarak, amelyeknek elöl van a szemük, távolságot tudnak becsülni, mint például a baglyok.

Hallás

A madaraknak nincs külső füle, csak néhány fajnál alkotnak fülszerű mintázatot a tollak, például egyes baglyoknál. A középfülben csak egy hallócsont van. A belső fülben csiga is van, viszonylag rövid és nincs feltekeredve. A baglyok füle aszimmetrikus, így pontosabban meg tudják határozni a leendő zsákmány helyét. A baglyok hallását arcuk alakja és tollazatának elrendeződése is segíti.[58] Ezzel szemben a legtöbb madárnak el kell mozdítania a fejét, hogy meghatározza a hangforrás irányát. Körülbelül ugyanazokat a hangokat hallják, mint az ember, a 100 Hz alatti hangok kivételével. A hallás időbeli felbontása kiváló, de érzékenyebb az erős zajokra. Egyes fajok akár négy hangot is képesek egyszerre kiénekelni.

Egyensúlyozás

Nemcsak fülükben van egyensúlyozó szervük, hanem a medencében is, ami a testhelyzetet elemzi, és segíti az egyensúlyozást például ágon üléskor. Ha ez a szerv tönkremegy, akkor a madár nem képes reagálni az ág helyzetének megváltozására.

Szaglás és ízelés

A legtöbb madár szaglása kifejezetten gyenge, ami megközelítően az emberének felel meg. Ez alól kivételek a kivifélék,[59] az újvilági keselyűk,[60] és a viharmadár-alakúak, akik szaglással keresik táplálékukat.[61] Orrlyukaik a csőr tövén nyílnak.

Az ízlelőbimbók nem a nyelven, hanem a nyelv tövénél és a garatban helyezkednek el. Számuk alacsony az emlősökéhez képest (kacsa 200, ember 9000). A táplálékszerzésben alárendelt szerep jut az ízlelésnek, szerepe mégsem elhanyagolható.

Tapintás

A legtöbb madárnak a nyelve és a csőre a legérzékenyebb a tapintási ingerekre. Táplálékkereséskor a látást, táplálékfelvételben az ízlelést egészíti ki. Fára mászáskor a lábujjaik által észlelt ingerek alapján tájékozódnak. A lilealakúak és más madarak tapintással ismerik fel a táplálékukat, amikor az iszapban kotorásznak.

Mágneses érzék

Egyes fajok, különösen a vándormadarak észlelik a Föld mágneses terét, az erővonalak irányát. Ennek érzékszerve a szemben[62] (és/vagy) a csőrben helyezkedik el. Először Wolfgang Wiltschko mutatta ki vörösbegyen a Zoologischen Institut in Frankfurt am Mainben 1967-ben.

A szemben levő mágneses érzékszerv a gyökpárképződés elvén működik, ugyanis a szembe érkező fény hatására molekulák gyökökké bomlanak. Erre a folyamatra hathat a Föld mágneses tere. A csőrben mágneses részecskék alkotják az iránytűt; elmozdulásukat a környező idegszövet észleli. A technikai eszközökkel szemben ez az iránytű inkább az inklinációt méri.

Csontváz

Egy galamb csontváza

A madaraknak két koponyatípusát különböztetjük meg: a futómadarakra és tinamukra jellemző paleognath és a repülő madarakra, valamint a pingvinekre jellemző, fejlettebb felépítésű neognath koponyát. Kifejlett madarakon a koponyacsontok összenőttek.[53] Emellett a madarakra általánosan jellemző a fogatlan csőr és a nagy méretű szemüreg. A két szemüreget csontos sövény választja el.

A madarak csontjai, szemben az emlősök tömör csontjaival, üregesek, ezzel csökkentve az állat súlyát. A csontok nagyon könnyűek, üregeik a lélegzőrendszerhez kapcsolódnak.[63]

A madarak számos (11-24) nyakcsigolyája igen lazán, heterocoelikus módon kapcsolódik egymáshoz, így a madárnyak rendkívül mozgékony. A hát mozgása már korlátozott, a többi szakasz pedig mozdíthatatlanul összenőtt, és az úgynevezett álkeresztcsontot vagy ágyékkeresztcsontot hozták létre.[64][53]

A bordák laposak, és a futómadarak kivételével az összes madárfaj szegycsontján jellegzetes tarajt (crista) találunk, amely tapadási felületet biztosít a repülőizmoknak.[65] (A futómadarak közül egyedül a tinamualakúaknál található tarajos szegycsont, de ezek is röpképtelenek, vagy igen rosszul repülnek).

A mellső végtagban (szárny) elkülöníthető a felkarcsont, az orsócsont és a singcsont, valamint két kéztőcsont, de a többi kéztőcsont a kézközépcsontokkal összenőve hozza létre a carpometacarpust.

A hátsó végtagban a combcsontot, a tibiotarsust (a lábszárcsont és néhány lábtőcsont összenövéséből), a vékony szárkapocscsontot, a csüdcsontot és a lábujjperceket különíthetjük el. A legtöbb madárfajnak 4 lábujja van, de a futómadarak esetében ez redukálódhat 3 vagy 2 lábujjra.

Izomzat

A repülőizmok

A madarak szárnyát hatalmas méretű mellizmok (musculus pectoralis, musculus supracoracoideus) mozgatják, amelyek a szegycsont taraján tapadnak meg. A tarajról indulva az egyik izom (a m. pectoralis) a felkarcsont alsó felületéhez, a másik (m. cupracoracoideus) a vállízületet megkerülve a felkarcsont felső felületéhez tapad. Vagyis a szárny lecsapását és felemelését végző izmok ugyanott erednek.

A madarak lábának különleges izma a musculus pectinus, amely a térdízülethez tapad, és inakkal az egyes lábujjakhoz csatlakozik. Ha a madár behajlítja a térdét, a m. pectinus megfeszül, és a madár lábujjai összezáródnak, ezzel biztosítva a kapaszkodást.

Kültakaró

Csukott szemű bagoly egy hasonló színezetű fatörzsön. A levelek részben eltakarják.
Az otus senegalensis tollazata az álcázást segíti

A madarak testét tollak borítják, amelyeket evezőtollakra, fedőtollakra és pehelytollakra különítünk el. Ez ma már csak a madarakra jellemző; a földtörténeti múltban a nem a valódi madarakhoz tartozó dinoszauruszok között is voltak tollasak. Ez biztosítja a hőszigetelést, és segít a repülésben is. A tollak még fontos szerepet játszanak a párválasztás során, illetve az álcázásban.[53] Több különböző tolltípus létezik a különféle célokra. A legtöbb madáron pásztákban nőnek, csak a pingvinek, a tüskésszárnyúmadár-félék és a ratites fajokon oszlanak el egyenletesen.[66] A pászták eloszlása jellemző a különféle rendszertani egységekre, így segíthetnek a meghatározásban. A tollazat egy fajon belül is különböző lehet, függ a nemtől,[67] a kortól és a társadalmi helyzettől.[68]

Sárga csőrű piros papagáj farktollait tisztogatja
Tollászkodó vörös lóri

Rendszeresen vedlenek. Az évente kétszer vedlő fajok költési időn kívül nyugalmi tollruhát, udvarlási és költési időben nászruhát viselnek. A legtöbb faj évente vedlik; a nagy ragadozók még ritkábban, több évente. A vedlési mintázat fajonként változó. Az énekesmadaraknál a szárnytollak vedlése szimmetrikusan halad belülről kifelé. A következő toll akkor hullik ki, miután az előző már kinőtt. A fedőtollak az alattuk levő tollakkal együtt kerülnek sorra. A belső primary az első; miután az első öt primary lecserélődött, azután a terciary tollak következnek. Utánuk a secondary tollak jönnek.[69] Néhány faj, például a kacsák egyszerre vesztik el szárnytollaikat, így egy időre röpképtelenekké válnak.[70] A faroktollak vedlési sorrendje a legtöbb fajon hasonló, belülről halad kifelé,[69] de például a fácánoknál kívülről kezdődik.[71] Harkályokon némileg módosult, a kifelé haladó fázis kihagyja a középső tollakat, azok a végén cserélődnek, így a harkály közben is támaszkodhat rá.[69][72] Énekesmadarakon a primary tollak kifelé, a secondary tollak kívülről befelé, és a farok belülről kifelé cserélődik.[73] Költés előtt a legtöbb faj nőstényei megkopaszodnak a hasukon. A bőr gazdagon erezett, ez segít a költésben.[74]

A madarak többnyire minden nap tollászkodnak, ébren töltött idejük 9%-át fordítják erre a tevékenységre.[75]Eltávolítják az idegen testeket. A madarak bőre mirigyekben szegény. Legfontosabb mirigyük a farcsíkmirigy (Glandula uropygii), amelynek zsírban gazdag viaszos váladéka vízhatlanná teszi a tollazatát, és akadályozza a baktériumok növekedését és szaporodását.[76] Egyes madaraknál különösen fejlett, más fajoknál hiányozhat. Tollászkodás végén ezzel a váladékkal keni be magát a madár. Ezt kiegészítheti hangyasavas kezeléssel, amit a hangyáktól szerezhet meg.[77]

A madarak lábán a pikkelyek ugyanúgy keratinból vannak, mint a csőr, a tollak és a karmok. Többnyire az ujjakon és a metatarsuson láthatók, de egyes madarakon (jégmadár, fakopáncsok) bokáig terjednek. Úgy gondolják, hogy homológok a hüllők és az emlősök pikkelyeivel.[78]

Emésztőkészülék

A madarak nyelőcsövének jellegzetes tágulata a begy, amelynek két típusa létezik: a két oldalra irányuló begyzsákokból álló valódi begy és a nyelőcső egyszerű tágulata, az álbegy. Előbbi a galambokra, énekesmadarakra és tyúkfélékre, utóbbi a ragadozó madarakra és a récefélékre jellemző. Több ragadozó madár köpetet képez a zsákmány maradékából.[79]

A madarak gyomra két részre tagolódik, a mirigyes gyomorra és az izmos zúzógyomorra vagy zúzára, amivel a táplálékot megőrlik, mivel nincs foguk, mert az akadályozná őket a repülésben. A madaraknál ezért előfordul, hogy homokot vagy apró kavicsokat nyelnek le, hogy azok segítsék őket a táplálék összezúzásában. A legtöbb faj a repülő életmódhoz való alkalmazkodás miatt gyorsan emészt. Egyes vándormadarak fehérjében tárolnak tartalékokat a vándorlás idejére.[80]

Tápcsatornájuk rendre kloákában végződik, amely a tápcsatorna, az ivarszervek és a húgycső közös kivezetőnyílása.

Légzés

A szárazföldi állatok közül a madaraknál alakult ki a legbonyolultabb és leghatékonyabb légzőszervrendszer.[53] Kettős légzéssel lélegeznek, melynek lényege, hogy a többi állattal ellentétben nemcsak be-, hanem kilégzéskor is történik gázcsere.[81] Ezt elsősorban a tüdő speciális felépítése teszi lehetővé. Belégzéskor a levegő 75%-a (3/4 része) a tüdőbe kerül, a maradék 25% (1/4 rész) a légzsákokba.

További érdekesség, hogy a madarak hangképző szerve nem a gégében, hanem a főhörgők elágazásánál található, ezért két helyen is képződik hang. Az alsó gégefők izmos kamrák, amelyek többszörös membránt tartalmaznak.[82] Egyes fajokban a légcső a testhez képest lényegesen hosszabb, ami felerősíti a madár hangját.[83] A madár ily módon képes egyszerre énekelni és levegőt venni, illetve egyszerre több hang kiadására is képes lehet. (A fülemülék például egyszerre négy különböző hang kiadására is képesek.)

A tüdő felépítése

A madarak tüdeje és a kettős légzés (A: normál légzés, B: erőteljesebb légzés) 1. Trachea 2. Paleopulmó 3. Neopulmó 4. Hátulsó légzsák (csak a leghátsó pár) 5. Elülső légzsák

A madarak tüdővel lélegeznek, melynek felépítése erősen eltér az emlősök tüdejétől. Míg az emlősök tüdejében a levegő vakon végződő léghólyagokba (alveolusokba) fut, addig a madarakéban úgynevezett léghajszálcsövek találhatók, melyeken a levegő folyamatosan keresztüláramolhat.

Szerkezet alapján kétféle tüdőt különíthetünk el: a primitívebb paleopulmót, és a fejlettebb neopulmót. A paleopulmóban a levegő kilégzéskor és belégzéskor is ugyanabba irányba áramlik, a neopulmóban ellentétesen.

A tüdőhöz 5 pár légzsák csatlakozik, amelyek hatékonyabbá teszik a ki- és belégzést, valamint könnyebbé teszik a madár testét. A madarak tüdejének térfogata állandó, a légcserét a légzsákok nyomásváltozása működteti.

A kettős légzés

A légcső (trachea) közvetlenül kapcsolódik a két hátulsó pár légzsákhoz valamint a paleo- és neopulmóhoz is. Belégzéskor a friss levegő közvetlenül átáramlik mind a paleo-, mind a neopulmón, így belégzéskor gázcsere történik. Ugyanekkor a hátulsó légzsákba is levegő kerül: egyrészt friss levegő közvetlenül a tracheából; másrészt a neopulmón átáramló, és már oxigénben szegényebb levegő is ide jut. Így a belégzés végére a légzsákban oxigénben viszonylag gazdag levegő lesz. Kilégzéskor a hátulsó légzsákokból a levegő egyrészt a légcsövön keresztül kiáramlik, másrészt ismét átáramlik a neopulmón így kilégzéskor is történik gázcsere. A légzsákból közvetlenül, és a neopulmón keresztül is kerül levegő a paleopulmóba, ezzel is növelve a gázcsere intenzitását.[84]

Keringés

A madarak az emlősökhöz hasonlóan állandó testhőmérsékletű, úgynevezett meleg vérű állatok. Szívük két-két, szilárd válaszfal által elkülönített kamrából és pitvarból áll, és rostos zsák veszi körül. A rostos zsákban a szív folyadékban úszik. A vér visszaáramlását a szívben billentyűk gátolják. A szívverés ütemét a jobb pitvar falában található szinuszcsomó adja meg. A depolarizációs jelet kalciumionok okozzák. A szív izomzata ívekbe rendeződik, amelyek rétegeket alkotnak, a belső, a középső és a külső rétegeket.[85] A pitvarok fala vékonyabb, mint a kamráké, mert a kamráknak erőteljesen kell összehúzódniuk az oxigéndús vér pumpálásához. Az azonos testtömegű emlősökhöz képest a madarak szíve nagy; így több vért tud egy időegység alatt pumpálni, hogy fedezze a repülés miatt megnőtt oxigén- és energiaszükségletet.[86]

Két vérkörük van, a jobb szívfél a kisvérköri, a bal szívfél a nagyvérköri keringést tartja fenn. A kis vérkörben a jobb kamrából a szén-dioxidos vér a tüdőartérián keresztül a tüdőbe áramlik, majd onnan oxigéndús vér áramlik vissza a bal pitvarba. A bal kamrából oxigéndús vér áramlik a test szövetei felé, onnan szén-dioxidban dús vér a jobb pitvarba. A madarakban nagyon hatékony a gázcsere; a tüdőben tízszer akkora felület áll ehhez rendelkezésre, mint az azonos méretű emlősöknek, és a tüdőben több vér van a kapillárisokban hosszegységenként.[86] Az artériákat a szívből kiindulva vastag elasztikus izmok védik a szívverés okozta nyomáskülönbségtől. A szívtől távolodva ahogy vékonyodnak, egyre merevebbek lesznek, amelyek oxigént és tápanyagokat szállítanak az egész testnek.[87] Az egyre kisebb ágakra oszló artériák megnövelik a felszínt, és a vér folyása lelassul. A vér befolyik a legkisebb kapillárisokba, itt lezajlik a gázcsere. A vér annyira lelassul, hogy a gázcsere a lehető leghatékonyabb legyen. Az oxigéndús vér a bal pitvarba, majd a bal kamrába folyik. Az oxigénszegénnyé vált vér kis vénákba, majd vénákba gyűlik, és visszajut a szívbe, ahol is a jobb pitvarba, majd jobb kamrába ömlik.[87]

Kiválasztás

A madarak kiválasztószervei a hüllőkhöz hasonlóan működnek. Veséjük a nitrogéntartalmú szemetet húgysavként választja ki.[88][89][90] Néhány madár, például a kolibrik képesek egy másik anyagcsereúton ammónia formájában is megszabadulni a fölös nitrogéntől.[91] Az emlősöktől eltérően kreatinin helyett kreatint választanak ki a kloákába, ami a végbél utolsó szakasza.[53] Nincs húgyhólyagjuk; a vizelet a végbélbe folyik (a strucc kivételével), majd onnan félig folyékony állapotban az ürülékkel távozik.[92][93] A végbélnek ez a szakasza a kloáka, nőstényekben a tojások is ezen haladnak át.

Szaporodás

A madarak két neműek, vannak hímek és nőstények. Nemüket a szexkromoszómák határozzák meg az ivart meghatározó ZW rendszer szerint. Eszerint a nőstényeknek ZW, a hímeknek ZZ kromoszómáik vannak.[53] Tehát a nem megtermékenyüléskor eldől, a hőmérsékletnek erre nincs hatása. Azonban előfordulhat, hogy az egyik nem érzékenyebb a melegre, ami nemtől függő halandóságot okoz.[94]

A madarak belső megtermékenyítésűek. A legtöbb faj a kloákák összeérintésével párzik. Néhány fajnál a hímeknek van péniszük, ilyenek a lapos szegycsontúak a kivik kivételével, a lúdalakúak a tüskésszárnyúmadár-félék kivételével, és a tyúkalakúak. A Neoaves többi csoportjánál nincs pénisz.[95][96] A pénisz méretét a spermaverseny erősségével indokolják.[97] Párzáson kívül a pénisz a kloákában pihen.[98]

Ez az egyetlen gerinces csoport, ahol az elevenszülés semmilyen formában nem jelent meg. Minden madárfaj meszes héjú tojásokat rak.

Fegyverek

A viharmadár-alakúak néhány faja képes gyomrából olajat felöklendezni támadóira.[99] Új-Guineában a pitohuis fajok közül egyesek tollai és bőre idegmérget tartalmaz.[100]

Néhány fajnak éles sarkantyúja van a szárnyán; ezek a tüskésszárnyúmadár-félék, fácánfarkú levéljáró, tüskésszárnyú lúd, zuhatagi réce és kilenc bíbicfaj. Néhány más faj csontos bütyköt visel vagy viselt a szárnyában, ezek: a gőzhajórécék (Tachyeres), lúdformák, Rodriguez-szigeti galamb (kihalt), Chionis, Crax és Burhinus fajok. A kihalt jamaikai íbisz szárnya hosszú volt, és kézfej is volt rajta. Ezeket a fegyvereket használhatják a ragadozók vagy akár saját fajtársaik ellen is, amivel súlyos sérüléseket vagy akár halált is okozhatnak.[101]

Életmód

A legtöbb faj nappal aktív, éjjel és szürkületkor csak a baglyok és a lappantyúk aktívak. A tengerparti madarak nem az éjjel-nappali ciklushoz, hanem az árapályhoz igazodnak, és éjjel és nappal is járnak táplálkozni, ha a vízállás megfelelő.[102]

Repülés

Fehér mellű fekete madár repülés közben. Szárnyai lefelé csapnak, farka kiterítve lefelé néz.
Fehérállú császárlégykapó repülés közben

A madarak alkalmazkodtak a repüléshez. A legtöbb madár tud repülni, habár vannak röpképtelen fajok. A mellső végtag szárnnyá alakult.[53] A szárnyak alakja és mérete határozza meg, hogyan repül a madár. Általában erős szárnyverdeséses szakaszok váltakoznak siklórepüléssel. Az erős repülőizmok eredése a mellcsonton kiemelkedő tarajon található. A testtömeg 15%-át teszik ki.[53]Tollaik a bőr származékai, a szárny- és faroktollak a repülésre és a kormányzásra szolgálnak. Szivacsos szerkezetűek a csontjaik, ezért könnyebbek. A repülés nagy izommunkát igényel, ezért van szükségük fejlett légzésre és keringési rendszerre. mindezek megkülönböztetik őket a többi gerincestől.

A repülést felhasználják táplálékszerzéshez, fészeképítő anyagok kereséséhez, ragadozók elkerülésére és a ragadozók elől való menekülésre. Voltak szigetek, ahová a madarak eljutottak, de az emlős ragadozók nem.[103] Ezeken a szigeteken a madarak az emlősök szerepét betöltve és a szűkös erőforrások miatt röpképteleneké váltak. Hatvan jelenleg is élő faj és több kihalt faj is röpképtelen (volt).[104] Egyes fajok ugyan nem repülnek, de repülő mozdulatkat végeznek úszás, búvárkodás közben: pingvinek, alkák. Ezeknek a repülő fajokhoz hasonló izomzatuk van. Puffin fajok és vízirigók úgy úsznak, ahogy repülnek.[105] Néhány faj az energiában szegény táplálék feldolgozásához alkalmazkodott. A futómadarak a gyors futásért váltak röpképtelenekké.

A repülés fizikai alapjai

A kolibri repülésének fázisai

A madarak repülését a szárny felépítése teszi lehetővé. A madarak szárnya repülés közben úgy tereli a levegőt, hogy a szárny felett gyorsabban áramoljon, mint alatta. Így a felül áramló levegő nyomása kisebb lesz. A madár az ebből adódó aerodinamikai felhajtóerőt használja fel a repüléshez.

A madárszárny (és a legtöbb repülő állat szárnyának) különlegessége, hogy lecsapáskor a szárnyprofil az állat sebességétől függően változtatható, így képes a rá ható felhajtóerőt változtatni. A madarak repülése rengeteg kutatót és mérnököt foglalkoztat. Ez a mechanizmus ugyanis sokkal hatékonyabb, mint a repülőgépekben alkalmazott, mivel ezek szárnyprofilját csak nagyon kis mértékben lehet változtatni.

A madarak között egyedülálló a kolibrifélék repülési technikája. Szárnyaikkal előre-hátra csapkodva nyolcast írnak le a levegőben, így képesek egy helyben lebegni. (Erre egyetlen más madár sem képes.) Ehhez rendkívül gyorsan kell verdesniük: a legkisebb kolibrik másodpercenként akár hetven szárnycsapásra is képesek lehetnek.

Intelligencia

Egyes madarakat, mint a varjúféléket és a papagájokat a legértelmesebb állatok között tartják számon. Több faj is készít és használ eszközöket, továbbá tudást örökít át, amit kultúrának is lehet tekinteni. A vándormadarak minden évben nagy távolságokat tesznek meg. Társas állatok, hanggal és látható jelzésekkel kommunikálnak, és sok közös tevékenységben vesznek részt, mint telepeken költés, közös vadászat, tollászkodás és ragadozók elkergetése.

Táplálkozás

16 különféle típust ábrázolása különböző méretű és alakú csőrrel
A csőr alakja alkalmazkodott a madárfajok táplálékához

A különböző madárfajok táplálkozása változatos. Fogyasztanak nektárt, gyümölcsöt, növényeket, magokat, de dögöt és más állatokat is, gerincteleneket és gerinceseket egyaránt, köztük más madárfajokat.[53] Mivel nincsenek fogaik, emésztőrendszerük alkalmazkodott a rágás nélkül megevett táplálék gyors emésztéséhez.[106]

Vannak generalisták, akik többféle módszerrel többféle táplálékot fogyasztanak, míg a specialisták csak egyféle módszert használnak, és erősen válogatósak.[53] Sok faj gerincteleneket, gyümölcsöket és magokat szedeget, de vannak fajok, amelyek lesből támadva kapják el apró zsákmányukat. A kártevőket elfogyasztó madarakat szívesen látják a gazdaságokban.[107] A nektárevők (kolibrifélék, nektármadárfélék, lórifélék) koevolválódtak táplálékadó növényeikkel, és ecsetszerű nyelvük van.[108] Kivifélék és gázlómadarak hosszú csőrükkel keresik gerinctelen zsákmányukat; a gázlómadarak fajonként változó hosszúságú csőre és módszerei különböző ökológiai fülkékre utalnak.[53][109] A búvármadarak, bukórécék, pingvinek és alkák víz alatt üldözik zsákmányukat, míg a szulafélék, jégmadárfélék, csérfélék légi vadászok, amelyek a levegőből csapnak bele a vízbe. A flamingófélék, három prionfaj, és néhány kacsa a vizet szűri.[110][111] A libák és a réceformák főként legelnek.

Egyes madarak, mint a fregattmadárfélék, a sirályfélék[112] és a halfarkasfélék[113] kleptoparaziták, azaz más madaraktól lopnak élelmet. Viszont nem ez a fő táplálékforrásuk; a halászattal, vadászattal szerzett élelmüket egészítik ki. Egy kutatás a nagy fregattmadarak álarcos szuláktól való lopásait vizsgálta. A cikk szerint átlagban csak 5%-ot lopnak, és ebből táplálékuk legfeljebb 40%-a származik.[114] Egyes fajok dögöt esznek; vannak, amelyek emellett vadásznak is, mint a sirályok, varjúfélék és más ragadozók, és vannak, amelyek nem, ezek a keselyűk.[115]

Ivás

A madarak vízigénye viszonylag kicsi, mivel nincsenek izzadtságmirigyeik és kiválasztásuk is hatékonyabb, mint az emlősöké.[116] Egyes sivatagi madarak képesek csak a táplálékból fedezni folyadékszükségletüket. Emellett másként is adaptálódtak ehhez a biotóphoz, például túlélik, ha testhőmérsékletük megemelkedik, és összegyűjtik a harmatot.[117] A tengeri madarak tengervizet isznak, a sót pedig a fejükön elhelyezkedő mirigyek választják ki.[118]

A legtöbb madár úgy iszik, hogy először a csőrébe veszi a vizet, majd felemeli a fejét, hogy a víz lefolyjon a nyelőcsövén. A galambfélék, díszpintyfélék, egérmadárfélék, guvatfürjfélék és túzokalakúak tudnak a fejük felemelése nélkül is inni.[119] Néhány sivatagi madár függ a vizesgödröktől, és a pusztaityúk-félék seregestül járnak vízért. A hímek hastollaikba itatva visznek vizet családjuknak.[120] Vannak fajok, amelyek begyükben szállítják a vizet, és a táplálékkal együtt öklendezik fel. A galambok, flamingók, pingvinek begytejet választanak ki a fiókák táplálására.[121]

Tollászkodás

A tollászkodás fontos a madár egészsége szempontjából. Mivel a tollazat életfontosságú, rendben kell tartani. A tollakat gombák, tollatkák és madártetvek támadják.[122] A tollazat átkenése mellett a madarak szívesen fürödnek vízben vagy porban. Egyes fajok belemerülnek a vízbe, de vannak, amelyek inkább belerepülnek. Az erdei madarak gyakran a leveleken összegyűlt esővízben vagy harmatban mártóznak. Száraz területeken homokfürdőt vesznek. A hangyafürdőzés azt jelenti, hogy a madár hagyja, hogy hangyák árasszák el tollruháját. A hangyasav tovább tisztítja a tollakat és a bőrt. Egyes fajok kitárt szárnyakkal napfürdőznek.[123][124]

Vándorlás

V alakzatban repülő kanadai ludak

Sok faj kihasználja a különböző éghajlati öveket, és vándorol. A vándormadarak közé tartoznak szárazföldi, vízi és parti fajok, amelyek mérsékelt vagy hideg égövben szaporodnak, és költési időn kívül a trópusokra vagy a másik féltekére repülnek. Indulás előtt feltöltik raktáraikat, testzsírjuk megnövekszik, és egyes szerveik összemennek,[80][125] mivel a hosszú repülőutak nagyon energiaigényesek, különösen, ha tengereken vagy sivatagokon repülnek át, és nincs lehetőség táplálkozni. A szárazföldi vándormadarak többnyire körülbelül 2500 km-t, a parti madarak 4000 km-t tudnak megtenni.[126] A rekorder a kis goda, ami éjjel-nappal repülve 10200 km-re jut el.[127] Tengeri vándormadarak még hosszabb utakra indulnak, a leghosszabb utat a Chilében és Új-Zélandon költő szürke vészmadár teszi meg, és Japánban, Alaszkában és Kaliforniában tölti a nyarat. Évente összesen 64 ezer kilométert utazik.[128] Más tengeri madarak inkább rögzített útvonal nélkül nagy távolságokra kóborolnak. A Déli-óceánon fészkelő albatroszok gyakran egészen az északi sarkvidékig repülnek.[129]

A Csendes-óceán térképe, rajta útvonalakkal Új-Zélandtól Koreáig
Kis godák műholddal megfigyelt útja. Ezek a madarak éjjel-nappal repülve évente több, mint 10 ezer kilométert képesek megtenni

A többi faj is kóborol, azaz rögzített útvonal nélkül rövidebb távolságokat tesz meg, hogy elkerülje a rossz időjárást és táplálékot szerezzen. Ilyenek a pintyek, amelyek költőhelyükhöz sem ragaszkodnak; évről évre új helyet keresnek maguknak, így ha az egyik évben sokan vannak egy helyen, akkor a következőben lehet, hogy eltűnnek onnan. Előfordul, hogy ugyanannak a fajnak az északibb területein költő példányai oda húzódnak, ahol fajtársaik egész évben tartózkodnak.[130] Mások csak részben vándorolnak, általában nőstények és alávetett hímek.[131] Egyes régiókban sok faj viselkedik így; Ausztráliában a nem énekesmadarak körében 44%, míg énekeseknél 32%. Magassági vándorlásra hegyekben költő fajok indulnak, a rossz idő közeledtével lejjebb vándorolnak. Ezt többnyire a lehűlés váltja ki, és a hegyek lakói jobb táplálékellátottságú helyeket keresnek maguknak.[132] Néhány faj nomád életmódú, nem tart territóriumot, hanem mindig oda vonul, ahol megfelelőek a körülmények. A papagájok rövidebb utakat tesznek meg.[133]

Már régóta ismert, hogy a madarak visszatalálnak fészkelőhelyükre. Az 1950-es években Bostonban útjára bocsátottak egy atlanti vészmadarat, aki 13 nap alatt 5150 km távolságról visszatért kolóniájába a walesi Skomernál.[134] Vándorlásuk alatt a madarak többféleképpen is tájékozódnak. Nappal a Napot, éjjel a Holdat és a csillagokat használják iránytűnek. A Nap helyzetének változását belső órájuk segítségével kompenzálják.[53] A csillagok közül a poláris csillagképek helyzetéhez igazodnak[135]. Emellett egyes fajok a Föld mágnesességét is kihasználják.[136]

Kommunikáció

Nagy, barna mintás madár kitárt szárnyakkal. A szárnyak közepén egy-egy fehér pont látszik.
A guvatgém nagy ragadozót mímelve védi fiókáit

A madarak látható és hallható jelekkel kommunikálnak. A jelzések egy része a fajtársakhoz, másik része más fajok tagjaihoz szól.

Testtartásukkal és tollazatuk felmeresztésével kifejeznek dominanciaigényt,[137] vagy fenyegetőznek, eljátszva a nagy ragadozót, mint például a guvatgém a ragadozókkal szemben, hogy megvédje fiókáit.[138] A tollazat formája, színe és mintázata a faj, a nem vagy az egyed azonosítását is lehetővé teszi. A látható kommunikáció magában foglalja a rituálékat is, amelyeknek eredetileg nem jelzésértékük volt, hanem gyakorlati eredményük. A rituálék jelezhetnek agressziót, behódolást, vagy a másik párként való elfogadását.[53] A legbonyolultabb rituálék az udvarlást kísérik; a táncok gyakran sok különböző mozdulatból állnak.[139] A hímek szaporodási sikere ezektől a táncoktól függ.[140]

Madárének

Egy Észak-Amerikában gyakori énekesmadár, az indiánökörszem éneke

Probléma esetén lásd:Médiafájlok kezelése.

A madarak hangképző szerve az alsó gégefő, ami a hörgők kettéágazásánál található. A hangzó kommunikáció hívásokból és énekekből áll, amelyek nagyon összetettek lehetnek. A madarászoknak le kell lassítaniuk a felvételeket, hogy értelmezni tudják a hallottakat. Egyes fajok külön tudják mozgatni a két gégefőt, így duettet tudnak énekelni önmagukkal.[82]

A hívójelek sokfélék. Hívják társaikat,[53] felmérik a közelben tartózkodókat,[141] párzásra hívnak, védik területüket,[53] azonosítják egymást;[142] ragadozókra figyelmeztetnek, néha a veszély típusát is megjelölve.[143] Néhány madár a saját hangját mechanikai hangokkal egészíti ki. A Coenocorypha fajai levegőt vezetnek át tollaikon,[144] a fakopáncsok fákon kopogtatva jelzik területüket,[145] és a pálmakakaduk eszközökkel dobolnak.[146]

Társas kapcsolatok

Apró madarak nagy tömegben olyan távolságról, hogy az egyes madarak kis foltoknak látszódnak.
Piroscsőrű szövőmadarak raja. Ez a faj a legnagyobb egyedszámú a madarak között,[147] és akár tízezres létszámú rajai is lehetnek

Néhány faj területhez kötve, családban él, míg mások nagy rajokat alkotnak. A rajképzés előnye a nagy szám által adott védelem, és a hatékonyabb táplálékszerzés.[53] Az egy faj által alkotott nagy rajok biztonságot adnak, de növelik a versengést a táplálékért.[148] A ragadozók elleni védelem különösen fontos a zárt területeken, mint az erdők, ahol a lombok eltakarhatják a ragadozókat, de több szem többet lát, így hamarabb riadót fújhatnak. Ez nagy, sok fajt magukban foglaló csapatok kialakulásához vezetett, ahol a különböző fajok nem versengenek egymással a táplálékért, és az egyes fajok létszáma kicsi. Ugyanis, ha túl sokan lennének egy fajból, akkor az alacsony rangú tagok bántalmazása nagyban csökkentené a táplálékszerzés hatékonyságát.[149]

A madarak néha más, nem madár fajokkal is társulnak. A tengeri madarak gyakran vadásznak együtt delfinekkel és tonhalakkal, így a zsákmányhalaknak egyik irányból sincs menekvés.[150] A szarvascsőrűmadár-félék a közönséges törpemongúzzal társulnak, és együtt keresnek táplálékot, és kölcsönösen figyelmeztetik egymást a veszélyre.[151]

Pihenés

Gyors anyagcseréjük miatt a madarak az aktív napszakukban is alszanak időnként. Alvás közben néha rövid időre kinyílik a szemük, hogy szemrevételezzék a környezetet, nincs-e veszély.[152] Úgy tudják, hogy a sarlósfecskefélék repülés közben is tudnak aludni, és radarmegfigyelések szerint a magasságcsökkenést a széllel szembe fordulva ellensúlyozzák.[153] Egyes alvástípusok alkalmasak lehetnek arra, hogy a madarak repülés közben is pihenhessenek.[154] Egyes fajoknál kimutatták, hogy agyféltekéik külön is tudnak aludni. Ezt a képességüket a rajban elfoglalt helyükhöz képest használhatják ki, mivel így az éber féltekéhez tartozó szem a kívülről érkező veszélyeket figyelheti. Tengeri emlősöknél is ismert hasonló adaptáció.[155] A madarak gyakran összegyűlnek éjszakára, aminek céljai a hatékony hőszabályozás és védekezés.[156] A gyülekezőhelyet is ennek megfelelően választják. Izzadságmirigyek híján különféleképpen hűtik magukat, például árnyékba húzódnak, vízbe állnak, kitárják szárnyukat, vagy levizelik magukat.[157]

Sok madár alvás közben nyakát a hátára hajtja, és csőrét a háttollak közé fúrja, míg más fajok a melltollaik közé dugják csőrüket. Sok madár fél lábon alszik, míg mások mindkét lábukat a tollaik közé rejtik, különösen hideg időben. Az énekesmadarak lába reflexesen zárul a gally körül alvás közben. Néhány nagyobb madárfaj, mint a fürj és a fácán éjszakára felgallyaz, vagyis fára települ alváshoz. Néhány kolibrifaj anyagcseréje jelentősen lelassul éjszakára. Ez több száz faj esetén megtörténik, így a kuvikfecskealakúak, az Artamus fajok és a lappantyúfélék esetén is. A téli estifecske hibernálódik.

Szaporodás

A legtöbb faj szociálisan monogám, még akkor is, ha a párok nem mindig hűségesek. A párkapcsolat többnyire egy tenyészszezonra szól, néha több évig is eltart, de élethosszig ritkán. Néhány faj poligám, ezek lehetnek poligyn fajok (egy hím, több nőstény), vagy poliandriát gyakorlók (egy nőstény, több hím). A nőstényeket tojóknak nevezik. Tojásait a legtöbb faj fészekbe rakja, de azok a fajok is saját testmelegükkel költik ki fiókáikat, amelyek nem építenek fészket. A legtöbb faj kikelés után még továbbgondozza fiókáit. A házityúk képes megtermékenyítetlen tojásokat is tojni.

A fészeklakó madarak általában csupaszon (csekély tollazattal), fejletlenül (csukott szemmel) kelnek ki, a szülők még sokáig gondozzák őket. Mivel a fiókák még nem önállóak és nem tudnak repülni, sőt, eleinte még járni sem, nagyrészt fákon fészkelnek, hogy az utódok védve legyenek a ragadozóktól. Kevés tojást raknak, mert a szülők nem tudnak sok fiókát gondozni.

A fészekhagyó madarak fiókái képesek követni anyjukat kikelésük után és önállóan táplálkoznak, de például repülni még nem tudnak. Általában talajszinten fészkelnek. A lúdalakúakra és a tyúkalakúakra jellemző.

Ökológiai jelentőségük

Egy kolibrifaj, az Eutoxeres condamini

A madarak ökológiai szerepe igen sokféle. Számos fajuk generalista, és világszerte elterjedt, sokuk pedig szélsőségesen specializálódott az élőhelyéhez vagy a táplálékához. Még egy olyan „ egyszerű” élőhelyen is, mint az erdő, az egyes ökológiai fülkék madárvilága rendkívül eltérő, változatos lehet. Más fajok élnek például az erdő legfelső lombkoronaszintjén, a cserjeszinten, és az aljnövényzet szintjén.

A madarak között egyaránt találhatunk növényevőket, ragadozókat, és dögevőket. A magevők fontos szerepet játszanak az egyes növények elterjesztésében, ugyanis ürülékükkel nagyobb területre hordják szét a magokat. A nektárral táplálkozó madarak a táplálékul szolgáló növény megporzásában játszanak nélkülözhetetlen szerepet (főleg a trópusokon). Ezek között gyakran nagyon szoros koevolúciós kapcsolat figyelhető meg: a növényt kizárólag egyetlen madárfaj képes megporozni, amely pedig csak a növény nektárjával táplálkozik. Ilyen kapcsolat figyelhető meg például számos kolibrifaj esetében.

A ragadozók főleg rovarokra, kisebb emlősökre, más madarakra vadásznak. A vízimadarak a prédaállatok populációinak szabályozásán kívül fontos szerepet játszanak a vízpartok talajának megújításában. Ez különösen a tengerpartok, tengeri szigetek tápanyagszegény talaján kolóniákban fészkelő fajoknál fontos.

A partvidéktől távoleső szigeteken gyakran madarak töltik be az egyébként emlősök által elfoglalt ökológiai fülkéket, mivel az emlősök oda nem voltak képesek eljutni. Tipikus példa erre az Új-Zéland szigetén őshonos kereru, vagy a mára már kihalt moák.

Rendszerezés

Hóbagoly

A ma élő madarak két alosztályra tagozódnak, osztályozásuk azonban több helyen is vitatott. Sibley és Ahlquist Phylogeny and Classification of Birds (1990) könyve alapmű,[158] de gyakran vitatják és módosítják. A legtöbb bizonyíték szerint a rendek pontosan megállapíthatók,[159] de a rendek közötti rokonságban nincs egyetértés. Az anatómia, a DNS és a fosszíliák vizsgálatával azonban egyre pontosabb képet kapnak erről is.[160]

Futómadár-szabásúak

A futómadár-szabásúak (Paleognathae) szájpadjának ősi jellegű, erős és nehéz csontozata van. Szegycsontjuk általában nem tarajos, röpképtelenek vagy csak ritkán repülnek. Két ismert rendjük:

Újmadárszabásúak

A újmadárszabásúak (Neognathae) csoportjában a szájpad nehéz, csontos váza visszafejlődött, szegycsontjukon nagy csonttaréj biztosítja a mellizmok tapadását. Többségük igen jól repül. Harmincegy rendjük ismert:

A már nem, vagy ritkán használt rendek

Közismert madárnevek

Az alábbiakban néhány közismert madártípus neve olvasható (egyszavas madárnevek). A madarak nemét a hím és a tojó elnevezéssel különböztetjük meg. Néhány madártípus hímjének külön elnevezése van, amit zárójelben adunk meg.

Veszélyeztetettség

Az IUCN Vörös Lista több mint 1200 veszélyeztetett madárfajt tartalmaz. A veszélyeztetettség legtöbbet idézett okai az élőhely elvesztése, a behurcolt fajok ragadozó tevékenysége, olajfoltok és növényvédőszerek, vadászat és halászat, valamint a klímaváltozás.

Kapcsolódó szócikkek

Jegyzetek

  1. http://www.ma.hu/tudomany/174896/Az_Archaeopteryx_madar_volt
  2. del Hoyo, Josep. Handbook of Birds of the World, Volume 1: Ostrich to Ducks. Barcelona: Lynx Edicions (1992). ISBN 84-87334-10-5 
  3. Sablon:La icon Linnaeus, Carolus. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiae. (Laurentii Salvii), 824. o. (1758) 
  4. a b c (2007. január 1.) „Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion”. Zoological Journal of the Linnean Society 149 (1), 1–95. o. DOI:10.1111/j.1096-3642.2006.00293.x. PMID 18784798.  
  5. Padian, Kevin.szerk.: Philip J. Currie and Kevin Padian (eds.): Bird Origins, Encyclopedia of Dinosaurs. San Diego: Academic Press, 41–96. o. (1997). ISBN 0-12-226810-5 
  6. Gauthier, Jacques.szerk.: Kevin Padian: Saurischian Monophyly and the origin of birds, The Origin of Birds and the Evolution of Flight, Memoirs of the California Academy of Science 8. San Francisco, CA: Published by California Academy of Sciences, 1–55. o. (1986). ISBN 0-940228-14-9 
  7. a b Gauthier, J., and de Queiroz, K. (2001). "Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name Aves." Pp. 7–41 in New perspectives on the origin and early evolution of birds: proceedings of the International Symposium in Honor of John H. Ostrom (J. A. Gauthier and L. F. Gall, eds.). Peabody Museum of Natural History, Yale University, New Haven, Connecticut, U.S.A.
  8. a b (2013) „A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds”. Nature 498 (7454), 359–62. o. DOI:10.1038/nature12168. PMID 23719374.  
  9. Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.) (2004). The Dinosauria, Second Edition. University of California Press., 861 pp.
  10. (2007) „A new look at the phylogeny of Coelurosauria (Dinosauria: Theropoda)”. Journal of Systematic Palaeontology 5, 429–463. o. DOI:10.1017/S1477201907002143.  
  11. Gauthier, J. (1986). "Saurischian monophyly and the origin of birds." In: K. Padian, ed. The origin of birds and the evolution of flight. San Francisco: California, Acad.Sci. pp.1–55. (Mem.Calif.Acad.Sci.8.)
  12. a b (2015) „The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc(Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?”. PeerJ 3, e1032. o. DOI:10.7717/peerj.1032. PMID 26157616.  
  13. (2011) „Evolving Perceptions on the Antiquity of the Modern Avian Tree, in Living Dinosaurs”. The Evolutionary History of Modern Birds, 306–324. o, Kiadó: John Wiley & Sons LtD. DOI:10.1002/9781119990475.ch12.  
  14. Influence of Earth's history on the dawn of modern birds. www.sciencedaily.com . American Museum of Natural History, 2015. december 11. (Hozzáférés: 2015. december 11.)
  15. a b (May 2014) „Morphological Clocks in Paleontology, and a Mid-Cretaceous Origin of Crown Aves”. Systematic Biology 63 (1), 442–449. o, Kiadó: Oxford Journals. DOI:10.1093/sysbio/syt110. PMID 24449041.  
  16. (2004) „The avian nature of the brain and inner ear of Archaeopteryx”. Nature 430 (7000), 666–669. o. DOI:10.1038/nature02706. PMID 15295597.   PDF fulltext Supplementary info
  17. Prum, Richard O. Prum (2008. december 19.). „Who's Your Daddy?”. Science 322 (5909), 1799–1800. o. DOI:10.1126/science.1168808. PMID 19095929.  
  18. Paul, Gregory S.. Looking for the True Bird Ancestor, Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds. Baltimore: Johns Hopkins University Press, 171–224. o. (2002). ISBN 0-8018-6763-0 
  19. Norell, Mark. Unearthing the Dragon: The Great Feathered Dinosaur Discovery. New York: Pi Press (2005). ISBN 0-13-186266-9 
  20. Borenstein, Seth. „Study traces dinosaur evolution into early birds”, 2014. július 31. (Hozzáférés: 2014. augusztus 3.) 
  21. (2014. augusztus 1.) „Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds”. Science 345 (6196), 562–566. o. DOI:10.1126/science.1252243. PMID 25082702. (Hozzáférés: 2014. augusztus 2.)  
  22. (2011. július 28.) „An Archaeopteryx-like theropod from China and the origin of Avialae”. Nature 475 (7357), 465–470. o. DOI:10.1038/nature10288. PMID 21796204.  
  23. Turner, Alan H. (2007. szeptember 7.). „A basal dromaeosaurid and size evolution preceding avian flight” (PDF). Science 317 (5843), 1378–1381. o. DOI:10.1126/science.1144066. PMID 17823350.  
  24. (2003. január 23.) „Four-winged dinosaurs from China”. Nature 421 (6921), 335–340. o. DOI:10.1038/nature01342. PMID 12540892.  
  25. Luiggi, Christina: On the Origin of Birds. The Scientist, 2011. július 1. (Hozzáférés: 2012. június 11.)
  26. (2007. január 1.) „The tenth skeletal specimen of Archaeopteryx”. Zoological Journal of the Linnean Society 149 (1), 97–116. o. DOI:10.1111/j.1096-3642.2006.00245.x.  
  27. a b (2013. március 15.) „Hind Wings in Basal Birds and the Evolution of Leg Feathers”. Science 339 (6125), 1309–1312. o. DOI:10.1126/science.1228753. PMID 23493711.  
  28. a b c d Chiappe, Luis M.. Glorified Dinosaurs: The Origin and Early Evolution of Birds. Sydney: University of New South Wales Press (2007). ISBN 978-0-86840-413-4 
  29. Agency France-Presse: Birds survived dino extinction with keen senses. Cosmos Magazine, 2011. április 1. (Hozzáférés: 2012. június 11.)
  30. (2015) „The oldest record of ornithuromorpha from the early cretaceous of China”. Nature Communications 6. DOI:10.1038/ncomms7987. PMID 25942493.  
  31. Clarke, Julia A. (2004). „Morphology, Phylogenetic Taxonomy, and Systematics of Ichthyornis and Apatornis (Avialae: Ornithurae)” (PDF). Bulletin of the American Museum of Natural History 286, 1–179. o. DOI:<0001:MPTASO>2.0.CO;2 10.1206/0003-0090(2004)286<0001:MPTASO>2.0.CO;2.  
  32. Clarke, Julia A. (2004). „Morphology, Phylogenetic Taxonomy, and Systematics of Ichthyornis and Apatornis (Avialae: Ornithurae)” (PDF). Bulletin of the American Museum of Natural History 286, 1–179. o. DOI:<0001:MPTASO>2.0.CO;2 10.1206/0003-0090(2004)286<0001:MPTASO>2.0.CO;2.  
  33. (2011) „From snout to beak: the loss of teeth in birds”. Trends In Ecology & Evolution 26 (12), 663–673. o. DOI:10.1016/j.tree.2011.09.004.  
  34. (2006. március 1.) „Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui”. Journal of Anatomy 208 (3), 287–308. o. DOI:10.1111/j.1469-7580.2006.00534.x. PMID 16533313.  
  35. Ritchison, Gary: Bird biogeography. Avian Biology. Eastern Kentucky University. (Hozzáférés: 2008. április 10.)
  36. Clements, James F.. The Clements Checklist of Birds of the World, 6th, Ithaca: Cornell University Press (2007). ISBN 978-0-8014-4501-9 
  37. Gill, Frank. Birds of the World: Recommended English Names. Princeton: Princeton University Press (2006). ISBN 978-0-691-12827-6 
  38. Clarke, Julia A. (2005). „Definitive fossil evidence for the extant avian radiation in the Cretaceous” (PDF). Nature 433 (7023), 305–308. o. DOI:10.1038/nature03150. PMID 15662422.   Nature.com, Supporting information
  39. (2004) „Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae)”. Bulletin of the American Museum of Natural History 286, 1–179. o. DOI:<0001:mptaso>2.0.co;2 10.1206/0003-0090(2004)286<0001:mptaso>2.0.co;2.  
  40. a b Ericson, Per G.P. (2006). „Diversification of Neoaves: integration of molecular sequence data and fossils” (PDF). Biology Letters 2 (4), 543–547. o. DOI:10.1098/rsbl.2006.0523. PMID 17148284.  
  41. Brown, Joseph W. (2007. június 1.). „Nuclear DNA does not reconcile 'rocks' and 'clocks' in Neoaves: a comment on Ericson et al.”. Biology Letters 3 (3), 257–259. o. DOI:10.1098/rsbl.2006.0611. PMID 17389215.  
  42. Ornithologists Publish Most Comprehensive Avian Tree of Life
  43. Newton, Ian. The Speciation and Biogeography of Birds. Amsterdam: Academic Press, 463. o. (2003). ISBN 0-12-517375-X 
  44. Brooke, Michael. Albatrosses And Petrels Across The World. Oxford: Oxford University Press (2004). ISBN 0-19-850125-0 
  45. Brooke, Michael. Albatrosses And Petrels Across The World. Oxford: Oxford University Press (2004). ISBN 0-19-850125-0 
  46. Schreiber, Elizabeth Anne. Biology of Marine Birds. Boca Raton: CRC Press (2001). ISBN 0-8493-9882-7 
  47. Sato, Katsufumi (2002. május 1.). „Buoyancy and maximal diving depth in penguins: do they control inhaling air volume?”. Journal of Experimental Biology 205 (9), 1189–1197. o. PMID 11948196.  
  48. Hill, David. The Pheasant: Ecology, Management, and Conservation. Oxford: BSP Professional (1988). ISBN 0-632-02011-3 
  49. Spreyer, Mark F.: Monk Parakeet (Myiopsitta monachus). The Birds of North America. Cornell Lab of Ornithology, 1998. DOI:10.2173/bna.322. (Hozzáférés: 2015. december 13.)
  50. Arendt, Wayne J. (1988. január 1.). „Range Expansion of the Cattle Egret, (Bubulcus ibis) in the Greater Caribbean Basin”. Colonial Waterbirds 11 (2), 252–62. o. DOI:10.2307/1521007.  
  51. Bierregaard, R.O..szerk.: Josep del Hoyo, Andrew Elliott and Jordi Sargatal (eds.): Yellow-headed Caracara, Handbook of the Birds of the World. Volume 2; New World Vultures to Guineafowl. Barcelona: Lynx Edicions (1994). ISBN 84-87334-15-6 
  52. Juniper, Tony. Parrots: A Guide to the Parrots of the World. London: Christopher Helm (1998). ISBN 0-7136-6933-0 
  53. a b c d e f g h i j k l m n o p q r Gill, Frank. Ornithology. New York: WH Freeman and Co (1995). ISBN 0-7167-2415-4 
  54. Anton Reiner, David J. Perkel, Claudio V. Mello, Erich D. Jarvis: Songbirds and the Revised Avian Brain Nomenclature. In: H. Philip Zeigler, Peter Marler (Hrsg): Behavioral Neurobiology of Birdsong. Annals of the New York Academy of Sciences. Bd. 1016, 2004, S. 77–108, doi:10.1196/annals.1298.013, Sablon:PMC
  55. Gesamter Absatz nach: Seweryn Olkowicz, Martin Kocourek, Radek K. Lučan, Michal Porteš, W. Tecumseh Fitch, Suzana Herculano-Houzel, Pavel Němec: Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences of the United States of America. Bd. 113, Nr. 26, 2016, S. 7255–7260, doi:10.1073/pnas.1517131113
  56. Wilkie, Susan E. (1998. február 1.). „The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus)”. Biochemical Journal 330 (Pt 1), 541–47. o. PMID 9461554.  
  57. Féányérzékeny sejtek az agyban
  58. Háziállat.hu a baglyokról
  59. Sales, James (2005). „The endangered kiwi: a review” (PDF). Folia Zoologica 54 (1–2), 1–20. o.  
  60. Ehrlich, Paul R.: The Avian Sense of Smell. Birds of Stanford. Stanford University, 1988. (Hozzáférés: 2007. december 13.)
  61. Lequette, Benoit (1989. augusztus 1.). „Olfaction in Subantarctic seabirds: Its phylogenetic and ecological significance” (PDF). The Condor 91 (3), 732–35. o. [2013. február 23-i dátummal az eredetiből archiválva]. DOI:10.2307/1368131.  
  62. Christine Maira Hein, Svenja Engels, Dmitry Kishkinev, Henrik Mouritsen: Robins have a magnetic compass in both eyes. In: Nature. Bd. 471, E1, 2011, doi:10.1038/nature09875.
  63. Ehrlich, Paul R.: Adaptations for Flight. Birds of Stanford. Stanford University, 1988. (Hozzáférés: 2007. december 13.) Based on The Birder's Handbook (Paul Ehrlich, David Dobkin, and Darryl Wheye. 1988. Simon and Schuster, New York.)
  64. Noll, Paul. „The Avian Skeleton”, paulnoll.com (Hozzáférés: 2007. december 13.) 
  65. Skeleton of a typical bird”, Fernbank Science Center's Ornithology Web (Hozzáférés: 2007. december 13.) 
  66. Demay, Ida S. (1940). „A Study of the Pterylosis and Pneumaticity of the Screamer”. The Condor 42 (2), 112–118. o. DOI:10.2307/1364475.  
  67. Guthrie, R. Dale: How We Use and Show Our Social Organs. Body Hot Spots: The Anatomy of Human Social Organs and Behavior. [2007. június 21-i dátummal az eredetiből archiválva]. (Hozzáférés: 2007. október 19.)
  68. Belthoff, James R. (1994. augusztus 1.). „Plumage Variation, Plasma Steroids and Social Dominance in Male House Finches”. The Condor 96 (3), 614–25. o. DOI:10.2307/1369464.  
  69. a b c Pettingill Jr. OS. Ornithology in Laboratory and Field. Burgess Publishing Co (1970). ISBN 0-12-552455-2 
  70. de Beer SJ, Lockwood GM, Raijmakers JHFS, Raijmakers JMH, Scott WA, Oschadleus HD, Underhill LG (2001). "SAFRING Bird Ringing Manual".
  71. Gargallo, Gabriel (1994. június 1.). „Flight Feather Moult in the Red-Necked Nightjar Caprimulgus ruficollis”. Journal of Avian Biology 25 (2), 119–24. o. DOI:10.2307/3677029.  
  72. Mayr, Ernst (1954). „The tail molt of small owls” (PDF). The Auk 71 (2), 172–78. o. [2013. május 24-i dátummal az eredetiből archiválva]. DOI:10.2307/4081571.  
  73. Payne, Robert B: Birds of the World, Biology 532. Bird Division, University of Michigan Museum of Zoology. (Hozzáférés: 2007. október 20.)
  74. Turner, J. Scott (1997). „On the thermal capacity of a bird's egg warmed by a brood patch”. Physiological Zoology 70 (4), 470–80. o. DOI:10.1086/515854. PMID 9237308.  
  75. Walther, Bruno A. (2005). „Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps”. Behavioural Ecology 16 (1), 89–95. o. DOI:10.1093/beheco/arh135.  
  76. Shawkey, Matthew D. (2003). „Chemical warfare? Effects of uropygial oil on feather-degrading bacteria”. Journal of Avian Biology 34 (4), 345–49. o. DOI:10.1111/j.0908-8857.2003.03193.x.  
  77. Ehrlich, Paul R. (1986). „The Adaptive Significance of Anting” (PDF). The Auk 103 (4), 835. o. [2013. május 24-i dátummal az eredetiből archiválva].  
  78. Lucas, Alfred M.. Avian Anatomy—integument. East Lansing, Michigan, US: USDA Avian Anatomy Project, Michigan State University, 67, 344, 394–601. o. (1972) 
  79. Balgooyen, Thomas G. (1971. október 1.). „Pellet Regurgitation by Captive Sparrow Hawks (Falco sparverius)” (PDF). Condor 73 (3), 382–85. o. [2013. május 24-i dátummal az eredetiből archiválva]. DOI:10.2307/1365774.  
  80. a b Battley, Phil F. (2000. január 1.). „Empirical evidence for differential organ reductions during trans-oceanic bird flight”. Proceedings of the Royal Society B 267 (1439), 191–5. o. DOI:10.1098/rspb.2000.0986. PMID 10687826.   (Erratum in Proceedings of the Royal Society B 267(1461):2567.)
  81. Maina, John N. (2006. november 1.). „Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone”. Biological Reviews 81 (4), 545–79. o. DOI:10.1017/S1464793106007111. PMID 17038201.  
  82. a b Suthers, Roderick A. (2004. június 1.). „Producing song: the vocal apparatus”. Ann. N. Y. Acad. Sci. 1016, 109–29. o. DOI:10.1196/annals.1298.041. PMID 15313772.  
  83. Fitch, W. T. (1999). „Acoustic exaggeration of size in birds via tracheal elongation: comparative and theoretical analyses”. Journal of Zoology 248, 31–48. o. DOI:10.1017/S095283699900504X.  
  84. Maina, John N. (2006. november 1.). „Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone”. Biological Reviews 81 (4), 545–79. o. DOI:10.1017/S1464793106007111. PMID 17038201.  
  85. Whittow, G. (2000). Sturkie's Avian Physiology/ edited by G. Causey Whittow. San Diego : Academic Press, 2000.
  86. a b Hoagstrom, C.W. (2002). Vertebrate Circulation. Magill's Encyclopedia of Science: Animal Life. Vol 1, pp 217-219. Pasadena, California, Salem Press.
  87. a b Hill, Richard W. (2012) Animal Physiology/ Richard W. Hill, Gordon A. Wyse, Margaret Anderson. Third Edition pp 647-678. Sinauer Associates, 23 Plumtree Road, Sunderland, MA 01375 USA
  88. Ehrlich, Paul R.: Drinking. Birds of Stanford. Stanford University, 1988. (Hozzáférés: 2007. december 13.)
  89. Tsahar, Ella (2005). „Can birds be ammonotelic? Nitrogen balance and excretion in two frugivores”. Journal of Experimental Biology 208 (6), 1025–34. o. DOI:10.1242/jeb.01495. PMID 15767304.  
  90. (2003) „Does the ostrich (Struthio camelus) coprodeum have the electrophysiological properties and microstructure of other birds?”. Comparative Biochemistry and Physiology A 134 (4), 749–755. o. DOI:10.1016/S1095-6433(03)00006-0. PMID 12814783.  
  91. Preest, Marion R. (1997. április 1.). „Ammonia excretion by hummingbirds”. Nature 386 (6625), 561–62. o. DOI:10.1038/386561a0.  
  92. Mora, J. (1965). „The regulation of urea-biosynthesis enzymes in vertebrates”. Biochemical Journal 96 (1), 28–35. o. PMID 14343146.  
  93. Packard, Gary C. (1966). „The Influence of Ambient Temperature and Aridity on Modes of Reproduction and Excretion of Amniote Vertebrates”. The American Naturalist 100 (916), 667–82. o. DOI:10.1086/282459.  
  94. (2005. március 1.) „Temperature-dependent sex ratio in a bird”. Biology Letters 1, 31–3. o. DOI:10.1098/rsbl.2004.0247. PMID 17148121.  
  95. Yong, Ed: Phenomena: Not Exactly Rocket Science How Chickens Lost Their Penises (And Ducks Kept Theirs). Phenomena.nationalgeographic.com. (Hozzáférés: 2013. október 3.)
  96. Ornithology, 3rd Edition - Waterfowl: Order Anseriformes. (Hozzáférés: 2013. október 3.)
  97. McCracken, KG (2000). „The 20-cm Spiny Penis of the Argentine Lake Duck (Oxyura vittata)”. The Auk 117 (3), 820–825. o. [2013. május 24-i dátummal az eredetiből archiválva]. DOI:[0820:TCSPOT2.0.CO;2 10.1642/0004-8038(2000)117[0820:TCSPOT]2.0.CO;2].  
  98. Gionfriddo, James P. (1995. február 1.). „Grit Use by House Sparrows: Effects of Diet and Grit Size” (PDF). Condor 97 (1), 57–67. o. DOI:10.2307/1368983.  
  99. Warham, John (1977. május 1.). „The incidence, function and ecological significance of petrel stomach oils” (PDF). Proceedings of the New Zealand Ecological Society 24 (3), 84–93. o.  
  100. Dumbacher, J.P. (1992. október 1.). „Homobatrachotoxin in the genus Pitohui: chemical defense in birds?”. Science 258 (5083), 799–801. o. DOI:10.1126/science.1439786. PMID 1439786.  
  101. (2011. január 5.) „The bizarre wing of the Jamaican flightless ibis Xenicibis xympithecus: a unique vertebrate adaptation”. Proceedings of the Royal Society B: Biological Sciences 278 (1716), 2333–2337. o. DOI:10.1098/rspb.2010.2117. (Hozzáférés: 2015. november 12.)  
  102. Robert, Michel (1989. január 1.). „Conditions and significance of night feeding in shorebirds and other water birds in a tropical lagoon” (PDF). The Auk 106 (1), 94–101. o. [2013. május 24-i dátummal az eredetiből archiválva]. DOI:10.2307/4087761.  
  103. McNab, Brian K. (1994. október 1.). „Energy Conservation and the Evolution of Flightlessness in Birds”. The American Naturalist 144 (4), 628–42. o. DOI:10.1086/285697.  
  104. Roots, Clive. Flightless Birds. Westport: Greenwood Press (2006). ISBN 978-0-313-33545-7 
  105. Kovacs, Christopher E. (2000). „Anatomy and histochemistry of flight muscles in a wing-propelled diving bird, the Atlantic Puffin, Fratercula arctica”. Journal of Morphology 244 (2), 109–25. o. DOI:<109::AID-JMOR2>3.0.CO;2-0 10.1002/(SICI)1097-4687(200005)244:2<109::AID-JMOR2>3.0.CO;2-0. PMID 10761049.  
  106. How Do Birds Eat If They Have No Teeth? | Blog | eNature. wild.enature.com . (Hozzáférés: 2016. március 30.)
  107. N Reid: Birds on New England wool properties – A woolgrower guide (PDF). Land, Water & Wool Northern Tablelands Property Fact Sheet. Australian Government – Land and Water Australia, 2006. [2011. március 15-i dátummal az eredetiből archiválva]. (Hozzáférés: 2010. július 17.)
  108. Paton, D. C. (1989. április 1.). „Bills and tongues of nectar-feeding birds: A review of morphology, function, and performance, with intercontinental comparisons”. Australian Journal of Ecology 14 (4), 473–506. o. DOI:10.1111/j.1442-9993.1989.tb01457.x.  
  109. Baker, Myron Charles (1973. április 1.). „Niche Relationships Among Six Species of Shorebirds on Their Wintering and Breeding Ranges”. Ecological Monographs 43 (2), 193–212. o. DOI:10.2307/1942194.  
  110. Cherel, Yves (2002). „Food and feeding ecology of the sympatric thin-billed Pachyptila belcheri and Antarctic P. desolata prions at Iles Kerguelen, Southern Indian Ocean”. Marine Ecology Progress Series 228, 263–81. o. DOI:10.3354/meps228263.  
  111. Jenkin, Penelope M. (1957). „The Filter-Feeding and Food of Flamingoes (Phoenicopteri)”. Philosophical Transactions of the Royal Society B 240 (674), 401–93. o. DOI:10.1098/rstb.1957.0004.  
  112. Miyazaki, Masamine (1996. július 1.). „Vegetation cover, kleptoparasitism by diurnal gulls and timing of arrival of nocturnal Rhinoceros Auklets” (PDF). The Auk 113 (3), 698–702. o. [2013. május 24-i dátummal az eredetiből archiválva]. DOI:10.2307/3677021.  
  113. Bélisle, Marc (1995. augusztus 1.). „Predation and kleptoparasitism by migrating Parasitic Jaegers” (PDF). The Condor 97 (3), 771–781. o. DOI:10.2307/1369185.  
  114. Vickery, J. A. (1994. május 1.). „The Kleptoparasitic Interactions between Great Frigatebirds and Masked Boobies on Henderson Island, South Pacific” (PDF). The Condor 96 (2), 331–40. o. [2013. május 24-i dátummal az eredetiből archiválva]. DOI:10.2307/1369318.  
  115. Hiraldo, F.C. (1991). „Unspecialized exploitation of small carcasses by birds”. Bird Studies 38 (3), 200–07. o. DOI:10.1080/00063659109477089.  
  116. Engel, Sophia Barbara. Racing the wind: Water economy and energy expenditure in avian endurance flight. University of Groningen (2005). ISBN 90-367-2378-7 
  117. (1999) „The role of hyperthermia in the water economy of desert birds”. Physiol. Biochem. Zool. 72 (1), 87–100. o. DOI:10.1086/316640. PMID 9882607.  
  118. Schmidt-Nielsen, Knut (1960. május 1.). „The Salt-Secreting Gland of Marine Birds”. Circulation 21 (5), 955–967. o. DOI:10.1161/01.CIR.21.5.955.  
  119. Hallager, Sara L. (1994). „Drinking methods in two species of bustards”. Wilson Bull. 106 (4), 763–764. o.  
  120. MacLean, Gordon L. (1983. június 1.). „Water Transport by Sandgrouse”. BioScience 33 (6), 365–369. o. DOI:10.2307/1309104.  
  121. Eraud C (2008). „The crop milk: a potential new route for carotenoid-mediated parental effects”. Journal of Avian Biology 39 (2), 247–251. o. DOI:10.1111/j.0908-8857.2008.04053.x.  
  122. (2005) „The alterations of plumage of parasitic origin”. Italian Journal of Animal Science 4, 296–299. o.  
  123. (2004) „Bactericidal and fungicidal activity of ant chemicals on feather parasites: an evaluation of anting behavior as a method of self-medication in songbirds”. The Auk 121 (4), 1262–1268. o. DOI:[1262:BAFAOA2.0.CO;2 10.1642/0004-8038(2004)121[1262:BAFAOA]2.0.CO;2].  
  124. (2010) „How Birds Combat Ectoparasites”. The Open Ornithology Journal 3, 41–71. o. DOI:10.2174/1874453201003010041.  
  125. Klaassen, Marc (1996. január 1.). „Metabolic constraints on long-distance migration in birds”. Journal of Experimental Biology 199 (1), 57–64. o. PMID 9317335.  
  126. Gill, Frank. Ornithology, 2nd, New York: W.H. Freeman (1995). ISBN 0-7167-2415-4 
  127. Long-distance Godwit sets new record”, BirdLife International, 2007. május 4. (Hozzáférés: 2007. december 13.) 
  128. Shaffer, Scott A. (2006). „Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer”. Proceedings of the National Academy of Sciences of the United States of America 103 (34), 12799–802. o. DOI:10.1073/pnas.0603715103. PMID 16908846.  
  129. Croxall, John P. (2005). „Global Circumnavigations: Tracking year-round ranges of nonbreeding Albatrosses”. Science 307 (5707), 249–50. o. DOI:10.1126/science.1106042. PMID 15653503.  
  130. Wilson, W. Herbert, Jr. (1999). „Bird feeding and irruptions of northern finches:are migrations short stopped?” (PDF). North America Bird Bander 24 (4), 113–21. o. [2013. május 24-i dátummal az eredetiből archiválva].  
  131. Nilsson, Anna L. K. (2006). „Do partial and regular migrants differ in their responses to weather?”. The Auk 123 (2), 537–47. o. DOI:[537:DPARMD2.0.CO;2 10.1642/0004-8038(2006)123[537:DPARMD]2.0.CO;2].  
  132. Rabenold, Kerry N. (1985). „Variation in Altitudinal Migration, Winter Segregation, and Site Tenacity in two subspecies of Dark-eyed Juncos in the southern Appalachians” (PDF). The Auk 102 (4), 805–19. o.  
  133. Collar, Nigel J..szerk.: Josep del Hoyo, Andrew Elliott and Jordi Sargatal (eds.): Family Psittacidae (Parrots), Handbook of the Birds of the World, Volume 4: Sandgrouse to Cuckoos. Barcelona: Lynx Edicions (1997). ISBN 84-87334-22-9 
  134. Matthews, G. V. T. (1953. szeptember 1.). „Navigation in the Manx Shearwater”. Journal of Experimental Biology 30 (2), 370–96. o.  
  135. Mouritsen, Henrik (2001. november 15.). „Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass”. Journal of Experimental Biology 204 (8), 3855–65. o. PMID 11807103.  
  136. Deutschlander, Mark E. (1999. április 15.). „The case for light-dependent magnetic orientation in animals”. Journal of Experimental Biology 202 (8), 891–908. o. PMID 10085262.  
  137. Möller, Anders Pape (1988). „Badge size in the house sparrow Passer domesticus”. Behavioral Ecology and Sociobiology 22 (5), 373–78. o. DOI:10.1007/BF00295107.  
  138. Thomas, Betsy Trent (1990. augusztus 1.). „Nesting Behavior of Sunbitterns (Eurypyga helias) in Venezuela” (PDF). The Condor 92 (3), 576–81. o. [2013. május 24-i dátummal az eredetiből archiválva]. DOI:10.2307/1368675.  
  139. Pickering, S. P. C. (2001). „Courtship behaviour of the Wandering Albatross Diomedea exulans at Bird Island, South Georgia” (PDF). Marine Ornithology 29 (1), 29–37. o.  
  140. Pruett-Jones, S. G. (1990. május 1.). „Sexual Selection Through Female Choice in Lawes' Parotia, A Lek-Mating Bird of Paradise”. Evolution 44 (3), 486–501. o. DOI:10.2307/2409431.  
  141. Genevois, F. (1994). „Male Blue Petrels reveal their body mass when calling”. Ethology Ecology and Evolution 6 (3), 377–83. o. DOI:10.1080/08927014.1994.9522988.  
  142. Jouventin, Pierre (1999. június 1.). „Finding a parent in a king penguin colony: the acoustic system of individual recognition”. Animal Behaviour 57 (6), 1175–83. o. DOI:10.1006/anbe.1999.1086. PMID 10373249.  
  143. Templeton, Christopher N. (2005). „Allometry of Alarm Calls: Black-Capped Chickadees Encode Information About Predator Size”. Science 308 (5730), 1934–37. o. DOI:10.1126/science.1108841. PMID 15976305.  
  144. Miskelly, C. M. (1987. július 1.). „The identity of the hakawai”. Notornis 34 (2), 95–116. o.  
  145. Forráshivatkozás-hiba: Érvénytelen <ref> címke; nincs megadva szöveg a(z) Attenborough nevű lábjegyzeteknek
  146. Murphy, Stephen (2003). „The breeding biology of palm cockatoos (Probosciger aterrimus): a case of a slow life history”. Journal of Zoology 261 (4), 327–39. o. DOI:10.1017/S0952836903004175.  
  147. Sekercioglu, Cagan Hakki.szerk.: Josep del Hoyo, Andrew Elliott and David Christie (eds.): Foreword, Handbook of the Birds of the World, Volume 11: Old World Flycatchers to Old World Warblers. Barcelona: Lynx Edicions, 48. o. (2006). ISBN 84-96553-06-X 
  148. Terborgh, John (2005). „Mixed flocks and polyspecific associations: Costs and benefits of mixed groups to birds and monkeys”. American Journal of Primatology 21 (2), 87–100. o. DOI:10.1002/ajp.1350210203.  
  149. Hutto, Richard L. (1988. január 1.). „Foraging Behavior Patterns Suggest a Possible Cost Associated with Participation in Mixed-Species Bird Flocks”. Oikos 51 (1), 79–83. o. DOI:10.2307/3565809.  
  150. Au, David W. K. (1986. augusztus 1.). „Seabird interactions with Dolphins and Tuna in the Eastern Tropical Pacific” (PDF). The Condor 88 (3), 304–17. o. DOI:10.2307/1368877.  
  151. Anne, O. (1983. június 1.). „Dwarf mongoose and hornbill mutualism in the Taru desert, Kenya”. Behavioral Ecology and Sociobiology 12 (3), 181–90. o. DOI:10.1007/BF00290770.  
  152. Gauthier-Clerc, Michael (2000). „Sleep-Vigilance Trade-off in Gadwall during the Winter Period” (PDF). The Condor 102 (2), 307–13. o. [2004. december 27-i dátummal az eredetiből archiválva]. DOI:[0307:SVTOIG2.0.CO;2 10.1650/0010-5422(2000)102[0307:SVTOIG]2.0.CO;2].  
  153. Bäckman, Johan (2002. április 1.). „Harmonic oscillatory orientation relative to the wind in nocturnal roosting flights of the swift Apus apus”. The Journal of Experimental Biology 205 (7), 905–910. o. PMID 11916987.  
  154. Rattenborg, Niels C. (2006). „Do birds sleep in flight?”. Die Naturwissenschaften 93 (9), 413–25. o. DOI:10.1007/s00114-006-0120-3. PMID 16688436.  
  155. Milius, S. (1999. február 6.). „Half-asleep birds choose which half dozes”. Science News Online 155 (6), 86. o. DOI:10.2307/4011301.  
  156. Beauchamp, Guy (1999). „The evolution of communal roosting in birds: origin and secondary losses”. Behavioural Ecology 10 (6), 675–87. o. DOI:10.1093/beheco/10.6.675.  
  157. Buttemer, William A. (1985). „Energy relations of winter roost-site utilization by American goldfinches (Carduelis tristis)” (PDF). Oecologia 68 (1), 126–32. o. DOI:10.1007/BF00379484.  
  158. Sibley, Charles. Phylogeny and classification of birds. New Haven: Yale University Press (1990). ISBN 0-300-04085-7 
  159. Mayr, Ernst. Species Taxa of North American Birds: A Contribution to Comparative Systematics, Publications of the Nuttall Ornithological Club, no. 9. Cambridge, Mass.: Nuttall Ornithological Club (1970). OCLC 517185 
  160. Forráshivatkozás-hiba: Érvénytelen <ref> címke; nincs megadva szöveg a(z) Jarvis2014 nevű lábjegyzeteknek

További információk