Periódusos rendszer

A Wikipédiából, a szabad enciklopédiából
Dmitrij Mengyelejev (Repin festményén)

A kémiai elemek periódusos rendszere a kémiai elemek egy táblázatos megjelenítése, melyet elsőként 1869-ben az orosz kémikus Dmitrij Mengyelejev alkalmazott. Olyan táblázatot szándékozott készíteni, amely jól mutatja az elemek tulajdonságai között fellelhető visszatérő jellegzetességeket („periódusokat”). Annak ellenére, hogy még csak kb. 60 elemet ismert és atomtömeg alapján rendezte az elemeket, valamint az elektronszerkezetről semmit sem tudott, korát meghazudtolva jósolta meg egyes elemeknek a felfedezését, táblázatában egy-egy üres helyet hagyva nekik. Az idők folyamán a periódusos rendszert többször módosították és bővítették, ezen kívül Mengyelejev ideje óta számos új elemet fedeztek fel, új elméleti modelleket dolgoztak ki, melyek magyarázattal szolgálnak a kémiai sajátosságok hátterét illetően. A táblázatnak létezik az elemek viselkedésének különböző szempontjait hangsúlyozó más elrendezése is, de a leggyakrabban használt forma még ma is nagyon hasonlít Mengyelejev eredeti ábrájára.

A kémia oktatásában ma általánosan elterjedt a periódusos rendszer használata, a kémiai sajátosságok különböző formáinak az osztályozásához, rendszerezéséhez és összehasonlításához hasznos segédeszköz. A táblázatot széleskörűen használják a kémiában, fizikában, biológiában és az iparban. 2010. április 9-én publikálták a 118. elem felfedezését (a 117-es rendszámú ununszeptium nevű mesterséges elemet).[1]

A periódusos rendszer ábrázolása[szerkesztés | forrásszöveg szerkesztése]

Csoport → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
I A II A III B IV B V B VI B VII B ← VIII B → I B II B III A IV A V A VI A VII A VIII A
↓ Periódus
1 1
H

2
He
2 3
Li
4
Be


5
B
6
C
7
N
8
O
9
F
10
Ne
3 11
Na
12
Mg


13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
4 19
K
20
Ca
21
Sc
22
Ti
23
V
24
Cr
25
Mn
26
Fe
27
Co
28
Ni
29
Cu
30
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
5 37
Rb
38
Sr
39
Y
40
Zr
41
Nb
42
Mo
43
Tc
44
Ru
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
52
Te
53
I
54
Xe
6 55
Cs
56
Ba
* 72
Hf
73
Ta
74
W
75
Re
76
Os
77
Ir
78
Pt
79
Au
80
Hg
81
Tl
82
Pb
83
Bi
84
Po
85
At
86
Rn
7 87
 Fr 
88
Ra
** 104
Rf
105
Db
106
Sg
107
Bh
108
Hs
109
Mt
110
Ds
111
Rg
112
Cn
113
Uut
114
Fl
115
Uup
116
Lv
117
Uus
118
Uuo
8 119
Uue
120
Ubn

* Lantanoidák 57
 La 
58
Ce
59
Pr
60
Nd
61
Pm
62
Sm
63
Eu
64
Gd
65
Tb
66
Dy
67
Ho
68
Er
69
Tm
70
Yb
71
Lu
** Aktinoidák 89
Ac
90
Th
91
Pa
92
U
93
Np
94
Pu
95
Am
96
Cm
97
Bk
98
Cf
99
Es
100
Fm
101
Md
102
No
103
Lr
Elemi sorozatok a periódusos rendszerben
Alkálifémek Alkáliföldfémek Lantanoidák Aktinoidák Átmenetifémek
Másodfajú fémek Félfémek Nemfémek Halogének Nemesgázok

A rendszámok színkódolása:

  • A kék színűek standard körülmények között folyékonyak;
  • A zöld színűek standard körülmények között gázneműek;
  • A fekete színnel írtak ugyanekkor szilárdak;
  • Azon elemek, melyeket piros színnel jelöltünk, mesterségesek, a természetben nem találhatók meg;
  • A szürke színűeket még nem fedezték fel.

A periódusos rendszer felépítése[szerkesztés | forrásszöveg szerkesztése]

Emlékmű a periódusos rendszer tiszteletére Pozsonyban a Szlovák Műszaki Egyetemen

Az elemek rendszerezésére tett korábbi kísérletek legtöbbször az atomtömeg alapján történő sorrendbe állítással állt valamilyen módon összefüggésben. Mengyelejev legnagyobb újítása a periódusos rendszer megalkotásánál az volt, hogy az elemeket úgy rendezte el, hogy az illusztrálja az elemek ismétlődő („periódusos”) kémiai tulajdonságait (még ha ez azt is jelentette, hogy nem voltak atomtömeg szerint sorrendben), és kihagyta a helyét a „hiányzó” (akkoriban még ismeretlen) elemeknek. Mengyelejev a táblázat alapján megjósolta ezeknek a „hiányzó” elemeknek a tulajdonságait, és később ezek közül sokat valóban felfedeztek, és a leírás illett rájuk.

Ahogy az atomok szerkezetének elmélete továbbfejlődött (például Henry Moseley által), nyilvánvalóvá vált, hogy Mengyelejev az elemeket növekvő rendszám (azaz az atommagban levő protonok száma) alapján rakta sorrendbe. Ez a sorrend majdnem megegyezik az atomtömegből adódó sorrenddel.

Annak érdekében, hogy az ismétlődő tulajdonságokat szemléltesse, Mengyelejev mindig új sort kezdett a táblázatban, úgy hogy a hasonló tulajdonságú elemek egymás alá, egy oszlopba kerüljenek. A periódusos rendszer függőleges oszlopait csoportnak nevezzük, I-től VIII-ig számozzuk. A csoporton belüli elemek vegyértékhéján lévő elektronok száma és elrendeződése azonos. Megkülönböztetjük a főcsoportokat (a táblázatban „A”-val jelöltük.) és a mellékcsoportokat (a táblázatban „B”-vel jelöltük).

A periódusos rendszer vízszintes sorait periódusnak nevezzük, 1-től kezdve számozzuk. Egy perióduson belül az elemek alapállapotú atomján a legkülső héj főkvantumszáma megegyezik és egyenlő a periódus számával.

Mengyelejev eredeti táblázatában mindegyik periódus ugyanolyan hosszú volt. A modern táblázatokban a táblázat alján egyre hosszabb periódusok találhatóak, melyek s-, p-, d-, és f-mezőkre osztják az elemeket. A periódusos rendszeren belül azonos mezőkbe soroljuk azokat az oszlopokat, ahol azonos alhéj töltődik fel, a mezőket a feltöltődő alhéjakról nevezzük el (s-héj, p-héj, d-héj stb.)

Nyomtatott táblázatokban az elemeket rendszerint az elem vegyjelével és rendszámával sorolják fel; sokszor szerepeltetik a táblázatban még az elem atomtömegét és más információkat, például az elektronkonfigurációt jelző rövidítéseket, elektronegativitást és a vegyértéket. 2006-ban 117 igazoltan felfedezett kémiai elemet tartalmaz a rendszer. Kilencven ezek közül természetes körülmények között is megtalálható a Földön, a többieket csak mesterségesen, részecskegyorsítókban sikerült előállítani. A 43-as technécium és a 61-es prométium mesterségesek (habár rendszámuk kisebb, mint a természetesen is előforduló 92-es urán); míg a 93-as neptúnium és 94-es plutónium ugyan mesterségesként szerepel, de nyomokban már megtalálták őket természetes körülmények között is.

A periódusos rendszer főcsoportjainak tulajdonságai[szerkesztés | forrásszöveg szerkesztése]

Az egyazon főcsoportba tartozó elemeknek, a vegyértékelektronjainak száma megegyezik. A vegyérték elektronok számát a főcsoport sorszáma adja meg. Ez alapján az ugyanabban a főcsoportban lévő elemeknek a kémiai tulajdonságai nagyban megegyeznek. Ez azzal magyarázható, hogy a vegyértékelektronok száma meghatározza, hogy az adott elem a kötésekben hány elektronnal tud részt venni. (Emellett a kötés milyenségében szerepet játszik az elektronegativitás is). Az elektronszerkezet felépítése (amely szintén hasonló a főcsoportbéli elemek között) pedig meghatározza az elem reakciókészségét. Így belátható, hogy egy ugyanolyan reakcióban a főcsoport különféle elemei legtöbbször ugyanúgy vesznek részt, csak a reakció hatásfokában van eltérés.

A periódusos rendszer története[szerkesztés | forrásszöveg szerkesztése]

Az eredeti táblázatot a szubatomi részecskék felfedezése és az atomszerkezetről alkotott jelenlegi kvantummechanikai elméletek kidolgozása előtt állították össze. Ha az elemeket atomtömegük szerint sorrendbe állítjuk, és bizonyos tulajdonságokat megvizsgáljuk, felfedezhető ismétlődés, „periodicitás” a növekvő atomtömeg mentén. Az első tudós, aki ezt felismerte a német kémikus, Johann Wolfgang Döbereiner volt, aki 1828-ban felfedezett egy pár, hasonló elemekből álló triádot:

Triádok
Elem Atomtömeg
(g/mol)
Sűrűség
(g/cm³)
Hányados
(cm³/mol)
klór 35,453 0,003214 11030
bróm 79,904 3,12 25,6
jód 126,904 47 4,93 25,7
 
kalcium 40,078 1,55 26,0
stroncium 87,62 2,54 33,2
bárium 137,327 3,59 38,2

1829-ben Döbereiner felállította a triádok törvényét: a triád középső elemének atomtömege a két másik számtani közepe volt. Újabb tudósok a triádokon túlmutató kémiai összefüggéseket fedeztek fel: a fluor bekerült a klór, bróm és jód mellé; a kén, oxigén, szelén és tellúr egy családba kerültek; a nitrogén, foszfor, arzén, antimon és bizmut pedig egy újabb csoportot alkotott.

1858-ban Cannizzaro rövid cikket írt, melyben világosan leírja a különbséget elem és molekula között. Ez alapján az 1860-as évek elején John Newlands és Alexandre-Emile Béguyer de Chancourtois, rájött, hogy ha az elemeket az atomtömegük szerint sorba rakjuk, akkor a kémiai tulajdonságaikban szabályosság figyelhető meg. Illetve, ha az elemeket növekvő atomtömeg szerint sorrendbe állítjuk, akkor minden nyolcadik hasonló fizikai és kémiai sajátosságokat mutat, amit a zenei oktávokhoz hasonlított. Bár sok esetben ez jól működött, az oktávok két ok miatt bizonyultak hibásnak:

  • A kalciumnál nagyobb atomtömegű elemekre nem volt igaz
  • Miután több elemet (például a héliumot, neont, argont) felfedeztek, az új elemek nem fértek bele a táblázatba

Végül 1869-ben az orosz kémiaprofesszor, Mengyelejev, és négy hónappal később a német Julius Lothar Meyer egymástól függetlenül készítették el az első periódusos rendszert, melyben az elemeket tömegük szerint rakták sorba. Azonban Mengyelejev néhány elemet a sorrendtől eltérően helyezett el, hogy a tulajdonságaik jobban igazodjanak a szomszédjaikhoz, kijavította néhány elem atomtömegét, és megjósolta a táblázat még akkor üres helyeire kerülő elemek felfedezését, és azok tulajdonságait. A rendszer helyességét megerősítette 1875-ben a gallium, 1879-ben a szkandium, 1886-ban a germánium felfedezése, mert ezek az elemek a megjósolt tulajdonságokat mutatták. Mengyelejevet a 19. század végén, 20. század elején az elemek elektronszerkezetének felfedezése igazolta.

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

  1. Yu. Ts. Oganessian et al. (2010.). „Synthesis of a New Element with Atomic Number Z=117” (angol nyelven). Physical Review Letter 104 (14). DOI:10.1103/PhysRevLett.104.142502.  

Források[szerkesztés | forrásszöveg szerkesztése]

További információk[szerkesztés | forrásszöveg szerkesztése]

Commons
A Wikimédia Commons tartalmaz Periódusos rendszer témájú médiaállományokat.

Kapcsolódó szócikkek[szerkesztés | forrásszöveg szerkesztése]