Négyzetes piramisszámok

A Wikipédiából, a szabad enciklopédiából
Ugrás a navigációhoz Ugrás a kereséshez
A negyedik piramisszám a 30, mert 1+4+9+16=30

Piramisszámnak vagy négyzetes piramisszámnak (vagy n-edik piramisszámnak) nevezzük az első n darab pozitív egész szám négyzetösszegét, más szóval az első n négyzetszám összegét.

Az elnevezést a fogalom geometriai jelentése motiválja, mert pontosan piramisszám számosságú gömbből lehet olyan piramist építeni, melynek alapja méretű négyzet.

Képletek[szerkesztés]

Az n-edik piramisszám formális definíciója a következő:

amely a tömörebben is kifejezhető a Σ szimbólummal:

Nem csak összegként, hanem zárt alakban is kifejezhető:

Tulajdonságok[szerkesztés]

A piramisszámok kapcsolatban állnak a binomiális együtthatókkal is a következőképpen:

Az 1-en kívül csak egy olyan szám van, amely egyben piramisszám és négyzetszám is, és ez a szám a 4900, amely a 70. négyzetszám és a 24. piramisszám. Ezt a tényt G. N. Watsonnak sikerült belátnia 1918-ban.

A négyzetes piramisszámok generátorfüggvénye[1]:

Az első néhány[szerkesztés]

Az első néhány piramisszám a következő:

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, … (A000330 sorozat az OEIS-ben)

Jegyzetek[szerkesztés]

  1. Simon Plouffe: Approximations de séries génératrices et quelques conjectures. [2013. február 6-i dátummal az eredetiből archiválva]. (Hozzáférés: 2016. július 20.)