CERN

A Wikipédiából, a szabad enciklopédiából
A CERN egy részlete, a háttérben a Jura-hegység már francia oldalon van.
Kutatási épületek a CERN-ben
Az indiai Atomenergia Részleg ajándéka ez a Siva-szobor. A 40-es épület mellett található.

A CERN az Európai Nukleáris Kutatási Szervezet, a részecskefizikai kutatások európai szervezete, a világ legnagyobb részecskefizikai laboratóriuma, a Nagy Hadronütköztető (LHC) és a World Wide Web (WWW vagy röviden Web) születési helye. A francia-svájci határon helyezkedik el, Genftől kissé északra. Az alapító okiratot 1954. szeptember 29-én írták alá 12 ország, jelenleg viszont már 20 tagországgal rendelkezik.

A CERN célja részecskegyorsítók biztosítása a nagyenergiájú fizika számára, nemzetközi együttműködések keretében számtalan kísérletet építettek fel itt. A fő telephelyen Meyrin-ben van egy nagy számítástechnikai központ is, rendkívül hatékony adatfeldolgozó kapacitással.

Jelenleg 3000 teljes idejű alkalmazottja van, és mintegy 6500 tudományos kutató és mérnök – 80 nemzet 500 egyeteméről –, a világ részecskefizikai közösségének mintegy fele, dolgozik CERN-beli kísérleteken. A nagyközönség szívesen látott vendége a CERN Mikrokozmosz kiállításának, és lehetőség van időnként ténylegesen működő detektorok szervezett látogatására is.

A CERN nemzetközi szervezet, nem tartozik egyik befogadó állam fennhatósága alá sem, telephelyei a szervezet felügyelete alá tartoznak, mint például az ENSZ épületek az ENSZ alá.

A CERN betűszó[szerkesztés | forrásszöveg szerkesztése]

A CERN betűszó eredetileg a Nukleáris Kutatások Európai Tanácsa (franciául Conseil Européen pour la Recherche Nucléaire) rövidítése volt. Később a „Tanács” elnevezést „Központ”-ra változtatták (Centre Européen pour la Recherche Nucléaire).[1]

Mai két hivatalos neve az angol European Organization for Nuclear Research, azaz Nukleáris Kutatások Európai Szervezete, valamint a European Laboratory for Particle Physics, azaz Európai Részecskefizikai Laboratórium, vagyis a betűszó elvált a tényleges rövidítéstől.

A CERN története[szerkesztés | forrásszöveg szerkesztése]

A Linac 1 egyik Alvarez-tartálya nyitva

A CERN alapítása[szerkesztés | forrásszöveg szerkesztése]

Az első hivatalos javaslatot egy európai laboratórium létrehozására Louis de Broglie francia fizikus tette az Európai Kulturális Konferencia 1949. december 6-án Lausanne-ban megnyíló ülésén.[2] További lökést adott az ügynek, amikor Isidor Isaac Rabi amerikai fizikus 1950-ben az UNESCO 5. általános konferenciáján Firenzében javasolta, hogy az európai országok az amerikai nemzeti laboratóriumok mintájára hozzanak létre egy közös kutatóközpontot kimondottan alapkutatási céllal, mindenféle hadicélú felhasználás nélkül.[1] 1951 decemberében az UNESCO kormányközi értekezletén Párizsban határozatot hoztak a CERN – az elnevezés ekkor született – létrehozásáról, két hónappal később pedig 11 ország egyezményt írt alá az ideiglenes tanács megalakításáról.[2] 1952 májusában találkozott először az ideiglenes tanács Párizsban.[forrás?] 1952. október 1-jén a tanács harmadik ülésén Genfet jelölték meg a szervezet székhelyeként, amit 1953. június 29-én Genf kanton népszavazása kétharmados többséggel jóváhagyott.[3] Az „ideiglenes” CERN 1953. szeptember 29-én kezdődő 6. ülésén Párizsban már 12 európai állam képviselői írták alá az alapító okiratot.[4] A CERN első genfi ülése 1954. február 24-én zajlott le.[forrás?] Az első kapavágásra 1954. március 17-én került sor.[5] A ratifikációs folyamat közben még tartott, az utolsó két ország a 12-ből – Franciaország és Németország – 1954. szeptember 29-én ratifikálta a CERN-ről szóló államközi megállapodást. Ai ideiglenes tanács ezután feloszlott.[4] A CERN alapkövét 1955. június 10-én Felix Bloch, a CERN első főigazgatója rakta le.[forrás?]

Szinkrociklotron[szerkesztés | forrásszöveg szerkesztése]

1957-ben üzembe állt a Szinkrociklotron (SC), amely protonokat gyorsított 600 MeV/c impulzusra. Eleinte részecskefizikai és magfizikai kísérletek számára szolgáltatott 600 MeV-es protonokat. 1964-től a magfizikára koncentrált. 1967-től nyalábot szolgáltatott az ISOLDE ionberendezés számára. Több mint 33 éves működés után 1990-ben állították le. [6]

Linac 1[szerkesztés | forrásszöveg szerkesztése]

A Linac 1 volt a CERN első lineáris gyorsítója. Első protonnyalábját 1958-ban tesztelték, 1959-ben lépett teljesen szolgálatba, amikortól 50 MeV-es protonokat szolgáltatott a protonszinkrotron (PS) számára. 1978-ig, a Linac 2 beindulásáig, az egyedüli protonforrás volt a CERN gyorsítórendszere számára.[7] 33 évi működés után 1992-ben állították le.[7]

Protonszinkrotron[szerkesztés | forrásszöveg szerkesztése]

1959. november 24-én kezdett működni a 28 GeV-es protonokat előállító Protonszinkrotron (PS). Ezzel az energiával rövid időre átvette a világcsúcsot a dubnai Egyesített Atomkutató Intézet-ben 1957 óta – ugyancsak szinkrotronelven működő – Szinkrofazotrontól. A csúcstartó 1960-tól több mint egy évtizedig a Brookhaveni Nemzeti Laboratórium AGS szinkrotrona volt 33 GeV-vel. Az 1970-es évektől a PS elsődleges feladata a CERN újabb gyorsítóinak kiszolgálása lett. Ma is működik, mint az LHC egyik előgyorsítója.[8]

1967-ben kezdték építeni és 1973-ban készítették az első fényképfelvételt a Nagy európai buborékkamrával (BEBC). A BEBC-t 1977-től az SPS kísérleteihez alkalmazták.[9]

Keresztező tárológyűrűk[szerkesztés | forrásszöveg szerkesztése]

1971. január 27-én működni kezdtek a Keresztező tárológyűrűk az (ISR: Intersecting Storage Rings), amelyik két egymást 8 különböző helyen kis szögben keresztező tárológyűrűből álló részecskegyorsító volt, amely a protonszinktronból kapott protonokat volt képes tárolni és a két protonnyalábot a metszépontokban elhelyezett kísérletekben maximálisan 62 GeV tömegközépponti energiával ütköztetni. Itt fejlesztette ki Simon van der Meer a sztochasztikus hűtés eljárását, amellyel nagy intenzitású részecskenyalábot lehet előállítani.[10]

Szuper protonszinkrotron[szerkesztés | forrásszöveg szerkesztése]

A CERN tanácsa 1971-ben kezdeményezte a Szuper protonszinkrotront (SPS), először 1976. június 17-én kapcsolták be. Képes volt 400 GeV-es protonnyalábot szolgáltatni.[11] 1981–84-ig proton–antiproton-ütköztetőként működött.[12] Itt alkalmazták először élesben a holland Simon van der Meer által kidolgozott sztochasztikus hűtés elvét az antiprotonok felhalmozása során.[13]

A BEBC-t 1977-től az SPS kísérleteiben neutrínó- és hadronnyaláboknak tették ki.[9]

A CERN második telephelye[szerkesztés | forrásszöveg szerkesztése]

A CERN-Prévessin bejárata

A CERN első telephelye a hivatalosan a svájci Meyrin-ben lévő telephely, amelynek azonban fele ténylegesen a franciaországi Saint-Genis-Pouilly területére esik.

Az eredeti javaslat szerint az SPS-t valahol Európa másik részén építették volna zöldmezős beruházásként egy második CERN-nel együtt. Az országok versengtek egymással, hogy náluk épüljenek meg, a viták politikai veszekedéssé fajultak. Végül John Adams-nek sikerült salamoni bölcsességgel meggyőznie mindenkit, hogy az SPS épüljön a meglévő CERN közelében és a PS legyen az előgyorsítója. Építettek azonban egy másik telephelyet, ugyancsak az SPS nyomvonala mentén, a franciaországi Prévessin-Moëns területén. A két telephelyet az 1970-es években CERN I-nek és CERN II-nek nevezték és független intézetek voltak külön főigazgatóval. Problémát jelentett ugyanis egy francia telephely alárendelése egy Svájc területén működő intézetnek.[12]

1975-ben a CERN tanácsa végül megszavazta a két intézet egyesítését, de a vezetési kettősség egy ideig megmaradt olyan módon, hogy két főigazgató (director-general) vezette a CERN-t, John Adams, mint vezérigazgató (executive director-general) és Leon Van Hove, mint tudományos főigazgató (research director-general). Végül 1981-től vezette egyetlen főigazgató, Herwig Schopper mindkét telephelyet.[12]

Kisenergiájú antiproton-gyűrű[szerkesztés | forrásszöveg szerkesztése]

A LEAR a PS déli csarnokában

A Kisenergiájú antiproton-gyűrű (LEAR: Low Energy Antiproton Ring) 1982-től 1996-ig) működött. Egy antiprotonforrás sorban az Antiprotongyűjtőn (AC: Antiproton Collector, 1987-től), az Antiproton-felhalmozón (AA: Antiproton Accumulator) és a Protonszinkrotronon (PS) keresztül látta el lassítandó vagy gyorsítandó antiprotonokkal. Itt állították elő az első antianyagot 1995-ben, amely 9 antihidrogén atomból állt. A tárológyűrűt 1996-ban zárták be. 1997-től az AC-ből átalakított Antiproton-lassító (AD: Antiproton Decelerator) pótolja. Az AA-t ugyanebben az évben szétszedték és Japánba szállították. A LEAR-t 2006-ban átépítették Kisenergiájú ion-gyűrűvé (LEIR: Low Energy Ion Ring).

LEP[szerkesztés | forrásszöveg szerkesztése]

A Nagy elektron–pozitron ütköztetőgyűrű (LEP: Large Electron Positron) a CERN 1989-től 2000-ig működő 27 km kerületű, elektronokat és pozitronokat ütköztetö, ebből a fajtából a világ eddigi legnagyobb energiájú részecskegyorsítója volt. Az első részecskenyaláb 1989. július 14-én körözött az alagútban. Az első fázisban – a Z-bozon tömegének pontos megmérése után – a tömegközépponti energia a Z-bozon tömegére (91 GeV) volt beállítva, hogy a lehető legtöbb Z-bozon keletkezzen. 1995-ben a LEP működésének második fázisához a gyorsítóhoz további rádiófrekvenciás üregrezonátorokat adtak, ami lehetővé tette a 209 GeV tömegközépponti energia elérését és W+W- párok keltését.[14] A LEP alagútjában 2008 szeptember 10. óta a Nagy hadronütköztető, az LHC működik.

A CERN mai gyorsítói[szerkesztés | forrásszöveg szerkesztése]

A CERN gyorsítói

Az LHC előgyorsító-rendszere[szerkesztés | forrásszöveg szerkesztése]

A Nagy hadronütköztető (LHC) előgyorsító rendszere az alábbi részecskegyorsítókból áll, amelyek az előzőtől kapott protonokat, antiprotonokat és nehézionokat gyorsítva adják tovább a következőnek, s végül az LHC-nak.

A proton-előgyorsító rendszer:

  1. A Linac 2 50 MeV-es protonokat szolgáltat.
  2. A PS Booster (PSB), amely a protonokat 1,4 GeV-re gyorsítja.
  3. A Protonszinkrotron (PS), amely a protonokat 28 GeV-re gyorsítja.
  4. A Szuper protonszinkrotron (SPS), amely a protonokat 450 GeV-re gyorsítja.

A nehézion-előgyorsító rendszer:

  1. A Linac 3 4,2 MeV/u nehézionokat (208Pb53+) szolgáltat.
  2. A Kisenergiájú ion-gyűrű (LEIR) tömöríti az ionbolyokat, és 72 MeV/u-ra gyorsítja hogy az LHC-ban megfelelő luminozitás legyen elérhető.[15]
  3. A Protonszinkrotron (PS) az ionokat 5,9 GeV/u-ra gyorsítja.[16]
  4. A Szuper protonszinkrotron (SPS) az ionokat 177 GeV/u-ra gyorsítja és átadja az LHC-nak.[16]

Nagy hadronütköztető[szerkesztés | forrásszöveg szerkesztése]

Az LHC detektorai és gyorsítórendszere. A protononyalábok a p jelű lineáris gyorsítóban kezdik útjukat, majd a Booster, a protonszinkrotron (PS, 26 GeV) és a szuper protonszinkrotron (SPS, 450 GeV) után az LHC 27 kilométeres alagútjába jutnak, ahol a négy nagy kísérletben ütköztetik azokat. A LEP-nél a páros sorszámú pontoknál voltak a detektorok L3, ALICE, OPAL DELPHI növekvő sorszám szerint

A Nagy hadronütköztető (LHC: Large Hadron Collider) a CERN jelenlegi legnagyobb gyorsítója. Építése 1999-ben kezdődött és a 2008 szeptemberi teszt után 2009 novemberében kezdett működni. Az LHC többek között a többi részecskének tömeget adó Higgs-részecske keresésére és a szuperszimmetria elméletének igazolására épült a korábbi LEP 27 km kerületű alagutjában.

A PS/SPS rendszer fogja gyorsítja elő az ide kerülő protonokat. Az LHC nyalábenergiája 7 TeV lesz.

Az alagút 100 méterrel a föld alatt húzódik a genfi repülőtér és a közeli Jura-hegység között. Öt kísérlet (CMS, ATLAS, LHCb, TOTEM, ALICE) épült a gyorsító mellett. Mindegyik részecskeütközéseket vizsgál más-más szempontból és technológiával. Építésükhöz hatalmas mérnöki teljesítményre volt szükség. Csak egy példa, a CMS elemeinek föld alá süllyesztéshez Belgiumból kellett egy 2000 tonna teherbírású darut bérelni.

Kisenergiájú ion-gyűrű[szerkesztés | forrásszöveg szerkesztése]

A Kisenergiájú ion-gyűrű (LEIR: Low Energy Ion Ring) 2006-ban indult az 1996-ban leállított LEAR átépítése után.

ISOLDE[szerkesztés | forrásszöveg szerkesztése]

Az 1967-ben üzembe állt ISOLDE radioaktív ionnyaláb-berendezés (ISOLDE: Isotope Separator Online DEvice) radioaktív atommagokat szolgáltat magfizikai, atomfizikai, anyagtudományi, szilárdtestfizikai és élettudományi kísérletek számára. 1974-ben és 1992-ben jelentősen átépítették. A részecskéket jelenleg a PS Boosterben gyorsítják, mielőtt az ISOLDE-ba kerülnének.

Antiprotonlassító[szerkesztés | forrásszöveg szerkesztése]

Az Antiprotonlassító (AD: Antiproton Decelerator) 2000-ben állt üzembe, antiprotonokat lassít le a fénysebesség mintegy 10%-ára, az antianyagvizsgálat fontos eszköze.

CNGS[szerkesztés | forrásszöveg szerkesztése]

A CERN másik projektje a CERN neutrínók a Gran Sasso-nak (CNGS, CERN Neutrinos to Gran Sasso) elnevezésű. Ebben a kísérletben a CERN-ből müon-neutrínókat irányítanak egy olaszországi Gran Sasso-hegység alatti alagútban lévő neutrínódetektorba. A kísérlet célja a Super-Kamiokande által kimutatott neutrínóoszcilláció további vizsgálata.

2011. szeptember 22-én az OPERA kísérlet kutatói bejelentették, hogy 17 és 28 GeV energiájú neutrínókat detektáltak, amelyek látszólag a fénysebességnél gyorsabban tették meg a 730 kilométeres távolságot.[17] Később ezt a kisérletet a CERN Icarus és az OPERA csapata is megismételte és hibásnak itélte.[18] A CERN 2012 március 12-én adott ki egy sajtóközleményt, miszerint a hibát valószinűleg egy rosszul csatlakoztatott GPS-szinkronizációs kábel okozta.[19]

A CERN tervezett gyorsítói[szerkesztés | forrásszöveg szerkesztése]

ELENA[szerkesztés | forrásszöveg szerkesztése]

Az ELENA (Extra Low ENergy Antiprotons, „Extra kis energiájú antiprotonok”) egy mintegy 10 m átmérőjű gyűrű lesz, amelyik az Antiprotonlassító 5,3 MeV-es antiprotonnyalábját fogja tovább hűteni és lassítani.[20]

Linac 4[szerkesztés | forrásszöveg szerkesztése]

A Linac 4 a Linac 2 leváltására tervezett lineáris gyorsító.[21][22]

SPL[szerkesztés | forrásszöveg szerkesztése]

Az SPL (Super Conducting Proton Linac, „szupravezető proton linac”) egy lineáris gyorsító, amely a Linac 4 mögött lesz a gyorsítóláncban.[21][23]

CLIC[szerkesztés | forrásszöveg szerkesztése]

A CLIC (Compact LInear Collider, „Kompakt lineáris gyorsító”) 3 TeV teljes energiájúra tervezett elektron–pozitron gyorsító és ütköztető lesz.[24]

HiLumi LHC[szerkesztés | forrásszöveg szerkesztése]

A HiLumi LHC (High Luminosity Large Hadron Collider) a jelenlegi LHC névleges luminozitásának megtízszerezésével létrehozott gyorsító lesz.[25]

A legfontosabb tudományos eredmények[szerkesztés | forrásszöveg szerkesztése]

Antianyag[szerkesztés | forrásszöveg szerkesztése]

A PS melletti kísérlet segítségével figyelt meg Antonino Zichichi – és vele egyidejűleg az AGS segítségével Brookhavenben Leon Lederman – 1965-ben először antianyag atommagot, konkrétan antideutériumot.[26]

1996: A LEAR-tárológyűrűnél antihidrogén-atomot hoztak létre. Ezzel megszületett az első bizonyítéka, hogy az anyag és az antianyag között kismértékű eltérés van (CP-sértés). 2001: Ezt egy további kísérlet megerősítette.

2002-ben több ezer „hideg” antihidrogén atomot állítottak elő és tároltak (Antiprotonlassító, ATHENA-együttműködés).

2011-ben sikerült antihidrogént csapdában tartani több mint 15 percig.[27]

Gyorsító- és detektorfizika[szerkesztés | forrásszöveg szerkesztése]

1968-ban Georges Charpak feltalálta a sokszálas proporcionális kamrát, amelyik egy gázzal töltött kamrában számtalan párhuzamos vezetéket tartalmazott a jobb hely- és energiafelbontás érdekében. Automatizálta és jelentősen felgyorsította a részecskeazonosítást. 1992-ben fizikai Nobel-díjat kapott érte.[28]

1968-ban Simon van der Meer feltalálta a sztochasztikus hűtést, amivel sikerült a korábbinál sokkal intenzívebb részecskenyalábokat létrehozni és így megnövelni az ütköztetőkben a luminozitást, azaz az ütközések idő és keresztmetszetegységre eső számát.

Elektrogyenge kölcsönhatás[szerkesztés | forrásszöveg szerkesztése]

A francia André Lagarrigue a Gargamelle buborékkamrával 1973-ban felfedezte a Z0-részecske semleges áramát.

1984-ben az SPS UA1 kísérletével felfedezték a gyenge kölcsönhatás közvetítő részecskéit, a W- és Z-bozonokat, amiért Carlo Rubbia és Simon van der Meer fizikai Nobel-díjat kapott 1984-ben.

Kvark-gluon plazma[szerkesztés | forrásszöveg szerkesztése]

2000: Az első nyomok arra, hogy kvark-gluon plazma keletkezett; ezzel kapcsolatos további kísérleteket az LHC ALICE-detektoránál terveznek.

Standard modell[szerkesztés | forrásszöveg szerkesztése]

A LEP-pel a Z-bozon tömegszélességének pontos megmérésével 1989–90-ben kimutatták, hogy csak három részecskecsalád létezik.

2012-ben az LHC két kísérlete, a CMS és az ATLAS felfedezett egy 125 GeV/c2 körüli tömeggel rendelkező bozont, amelynek a tulajdonságai összhangban vannak a standard modell Higgs-bozonjával.[29]

A CERN és a számítástechnika[szerkesztés | forrásszöveg szerkesztése]

A CERN Berners-Lee által használt első webszervere

WWW[szerkesztés | forrásszöveg szerkesztése]

A World Wide Web (világháló) alapelveit Tim Berners-Lee a CERN munkatársaként dolgozta ki 1990-ben.

Grid[szerkesztés | forrásszöveg szerkesztése]

Jelenleg a sok távoli számítógépet összekötő Grid-et fejlesztik a CERN-ben, amely az LHC miatt jelentősen megnövekedett számolási szükségletet hivatott kielégíteni.

A CERN tagjai[szerkesztés | forrásszöveg szerkesztése]

A CERN tagországai. Kékkel az alapítótagok, zölddel a később csatlakozók

Alapító tagok: Belgium, Dánia, Németország, az Egyesült Királyság, Franciaország, Görögország, Hollandia, Jugoszlávia, Norvégia, Olaszország, Svájc, Svédország.

Azóta:

Jelenleg tehát 20 tagja van.

Magyar részvétel[szerkesztés | forrásszöveg szerkesztése]

Itt elsősorban a kísérleti fizikusokról van szó. Az elméleti fizikusokról is bővebb szó esik a forrásmunkában.[30][31] Részecskefizikai kutatás elsősorban a következő intézetekhez köthető:

Előtörténet[szerkesztés | forrásszöveg szerkesztése]

Magyarország sok kutatója vett és vesz részt a CERN-es részecskefizikai és magfizikai mérésekben.

Az első kaput 1964-es Dubna-CERN egyezmény nyitott Magyarország számára, mely lehetővé tette magyar kutatók munkavégzését a CERN-ben.

Először magyar kutatók a EMC (Európai Müon-Együttműködés) méréseiben vettek részt, 8-an a KFKI Részecske és Magfizikai Kutatóintézetéből. A mérés célja a kvarkok kölcsönhatását leíró kvantum-színdinamika kísérleti ellenőrzése volt.

Részt vettek többen a LEP L3-detektorának kísérletében, melynek célja a standard modell vizsgálata volt. A detektor kimutatta, hogy nincs több részecskecsalád, a már ismert hármon kívül. Nem sikerült ugyan megtalálnia a Higgs-bozont, de tömegét jelentősen behatárolta 114 és 250 GeV/c² közé. A mérési pontosság lehetővé tette, hogy a fel nem fedezett top-kvark tömegét megbecsüljék. Ez igen jól egyezett a Fermilab Tevatron gyorsítójánál megtalált top ott mért tömegértékével.

CERN tagként[szerkesztés | forrásszöveg szerkesztése]

A felvételről szóló előzetes megállapodást Carlo Rubbia, a CERN akkori főigazgatója, és Pungor Ernő tárca nélküli miniszter írta alá 1992. április 26-án. Magyarország 1992. június 26-án csatlakozott a CERN-hez, ekkor vette fel Magyarországot egyhangú szavazással a CERN Tanács.

A szuper-protonszinkrotron (SPS) NA49 nehézionfizikai kísérletéhez rögtön csatlakozott egy csoport, mely a berendezés felépítésében is részt vett a „Budapest-falnak” nevezett detektor megépítésével, mely repülési időt (közvetve sebességet) mért.

Magyarország belépésünk óta nagyobb létszámmal vett részt a LEP OPAL detektorának kísérleteiben. Mivel a detektor már készen volt, az ottani tudósaink főleg a fizikai analízisekben vettek részt: a Higgs-bozon keresésében, a standard modell ellenőrzésében és fotonfizikai vizsgálatokban.[32]

Az épülő LHC kísérleteiben két csoport vesz részt

  • a részecskefizikusok a CMS-detektorának építésében, tesztelésében, elindulása után majd a kísérletek elemzésében,
  • nehézion-fizikusaink pedig elsősorban az ALICE kísérletben.

Vannak kutatóink az antiproton-lassítóhoz (AD) csatlakozó japán-európai ASACUSA-kísérletben is, ahol antiprotonos kísérletekkel vizsgálják többek között a CPT-szimmetriát. Az ASACUSA egy rövidítés (Atomic Spectroscopy And Collisions Using Slow Antiprotons = atomi spektroszkópia és ütközések lassú antiprotonok felhasználásával), de emellett utalás Tokió híres Asacusa-szentélyére is.[33][34] Végül részt veszünk az LHCb kísérlet Online Monitoring rendszerének fejlesztésében is.

Az alagút építésénél használták a MOM Gi-B3 típusú giróteodolitját is

A CERN és a kultúra[szerkesztés | forrásszöveg szerkesztése]

A CERN a kiinduló helyszíne az Angyalok és démonoknak, Dan Brown regényének, illetve az abból készült 2009-es filmnek. A CERN angol nyelvű oldalán leírás található arról, hogy mi igaz, és mi nem a könyv CERN-nel kapcsolatos állításaiból.

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

Források[szerkesztés | forrásszöveg szerkesztése]

További információk[szerkesztés | forrásszöveg szerkesztése]

Commons
A Wikimédia Commons tartalmaz CERN témájú médiaállományokat.