Maglev

A Wikipédiából, a szabad enciklopédiából
Japán maglev 2005-ben
Maglev indul a sanghaji Pudong repülőtérről a belváros felé

A lebegő mágnesvasút, vagy gyakran használt angol rövidítéssel maglev[1] vasút olyan vasúti rendszer, amelynél a járművek pályán tartását és hajtását a hagyományos kerekek helyett mágneses mező végzi. Ezzel a módszerrel akár a repülőgépekét megközelítő, 500 km/h-nál nagyobb sebesség is elérhetővé válik.

Története[szerkesztés | forrásszöveg szerkesztése]

A mágneses lebegtetés és hajtás elve nem újdonság, azt már 1934-ben szabadalmaztatta a német Hermann Kemper. A megvalósítás gondolata a 20. század hatvanas éveiben, Németországban, az USA-ban és Japánban merült fel. A német MBB konszern már 1971-ben egy 660 m-es kísérleti pályán próbálta az elv valóra váltását. A munkában rövidesen minden érdekelt német nagyvállalat – a Bundesbahntól, a Thyssenen és a Henschelen át a Siemensig – bekapcsolódott és 1979-ben már engedélyezték az első ilyen, személyszállításra is alkalmas jármű üzembe helyezését. Az ugyanebben az évben rendezett hamburgi világkiállításon, erre a célra épített pályán a Transrapid 05 tipusú kocsi több ezer látogatóval ismertette meg a mágnesesen lebegő vasutat.

A 07 típusú jármű 1993-ban 450 km/h sebességi rekordot állított fel, és megkezdték a Berlin és Hamburg közötti MAGLEV összeköttetés tervezését. A fővállalkozók 1998 májusában láttak neki a terv megvalósításának, s már szóba került a pálya Drezdán, Prágán és Bécsen át Budapestig történő kiépítése is. Azonban a Német Kormány az óriási költségek miatt elállt a megvalósítás finanszírozásától, s ezt követően kezdtek kutatni egy külföldi megrendelő után és ez találkozott a kínai fejlesztési igénnyel.

A maglev elv[szerkesztés | forrásszöveg szerkesztése]

A villanymotoroknál a mágneses kölcsönhatás forgatja az állórészben (sztrátor) a forgórészt, a rotort. Azonban, ha a hengeres villanymotort a palást mentén felvágjuk és kiterítjük, két hosszú elemet kapunk és a tekercseibe vezetett áram mágneses hatására egymás felett elmozdul.

A maglev vasút felépítése, működése[szerkesztés | forrásszöveg szerkesztése]

A vonat nem a hagyományos kerék-sín kapcsolatot használja. Kerekek helyett elektromágnesek vannak a szerelvény aljában, amiket a kocsikban lévő akkumulátor táplál. A pálya 6 méter magas betonoszlopokon fekvő elektromágnesekből áll. Az azonos mágneses pólusok (a pályán illetve a vonaton) taszítják egymást.

A maglev vonat részére teljesen különálló pálya kell. Ez jelentősen megdrágítja a beruházást. Továbbá a maglev pályáját semmi nem keresztezheti. Ezért zárt, vagy emelt szintű pályát kell építeni. A sínrész 6-10 m magas betonoszlopokon helyezkedik el.

A maglev vonatok két legismertebb változata a japán és a német fejlesztésű maglev vonat.

A japán maglev vonat az úgynevezett EDS (electrodynamic suspension, azaz elektrodinamikus felfüggesztés) rendszert használja, mely a következőket takarja:

A vonat egy csatornában - azaz "U" alakú vezérsín mentén - fut, lehetetlenné téve a kisiklást. A tekercsek a mozdony aljában kölcsönhatásba lépnek a vezérsín (állórész) tekercseivel, melyek áram hatására mágneses mezőt hoznak létre, így mozdítva el a kocsikat. A szerelvény oldalán irányítómágnesek helyezkednek el, melyek megakadályozzák a vonat esetleges falhoz való ütközését. Az EDS rendszert a japánok fejlesztik, a vonat neve JR-Maglev, azaz a Japan Rail Maglev. Ez a maglev akár 10 cm-re is képes lebegni a pálya felett. A frekvencia növelésével a maglev vonat egyre gyorsabban halad, míg el nem ér egy bizonyos értéket. A vonat gumikerekeken gyorsul fel, majd a 100 km/h-s sebesség elérése után a kerekek visszahúzódnak, mivel ekkor az elektromos ellenállás hirtelen nullára csökken, és a szerelvény lebegni kezd. A japánok szerint a gumikerekek hasznosak lehetnek, ha valamilyen okból a rendszer meghibásodna és leállna. Ennél a rendszernél jelen vannak a szupravezető elektromágnesek is. Ez a fajta elektromágnes lehetővé teszi az elektromos áram folyását akkor is, mikor a forrás ki van kapcsolva, ezért a japán maglev sokkal kevesebb energiát igényel, mint a német fejlesztés, mely a standard elektromágneseket részesíti előnyben (csak akkor folyik áram a tekercsekben, amikor a forrás be van kapcsolva). Hűtéssel egy bizonyos hőmérséklet alatt a szupravezetők elektromos ellenállása közel nulla, és az áram veszteség nélkül folyik, míg az anyag a kritikus hőmérséklet alatt van. Ha ilyenkor a szupravezetőt valamilyen mágneses mezőbe tesszük, akkor az anyag azt teljesen kiszorítja belsejéből, ám ez megszűnik, amint az anyag átlépi azt a bizonyos kritikus hőmérsékletet. Ez azt jelenti, hogy állandó alacsony hőmérsékletre van szükség a maglev vonatok tekercseinek működéséhez, amit folyékony nitrogén és hélium használatával érnek el. Az ilyen tekercseknek számos előnyük van, például a mágneses mező körülbelül 10-szer nagyobb, kevesebb energia szükséges a működtetéshez, mivel a forrást ki lehet kapcsolni. Az erős mágneses mezők miatt a pacemakerrel rendelkező számára nem előnyös a japán maglev vonatok használata.

A német Transrapid az EMS (electromagnetic suspension, azaz elektromágneses felfüggesztés) rendszert alkalmazza. Itt a vonat egy "T" alakú sínt ölel körül. A sín és a jármű közötti távolság igen kicsi (1 cm), és ez igen nagy precizitást igényel. Emiatt szenzorokat kell szerelni a jármű aljára, melyek segítségével szabályozható a szükséges távolság. A rendszer leállása esetén akkumulátorok biztosítják az áramot további egy órán keresztül. A mágneses mező sokkal gyengébb a standard elektromágnesek miatt. A technológia viszonylag egyszerű, valamint a gumikerekek és a szupravezető tekercsek hiánya jelentősen lecsökkenti a német maglev vonat árát, viszont a kis sín-vonat távolság állandó figyelmet igényel, mivel bármilyen kisebb elmozdulás a rendszer hibás működését okozhatja. A karbantartási költségek így jelentősen megemelkedhetnek. A sztátor tekercsei a sínrész alján helyezkednek el az úgynevezett "stator pack"-ben védve a környezeti hatásoktól.

Mindkét típus lineáris szinkron motort alkalmaz, melynek sztátora a betonsínbe van építve, míg a rotorrész a vonat aljában helyezkedik el. A jármű nem tartalmaz különösebben bonyolult rendszert, így azok könnyebbek, egyszerűbbek, olcsóbbak, és gyorsabban képesek futni, mint azok a maglev vonatok, melyek lineáris aszinkron motorokat használnak a működéshez. A lineáris aszinkron motor sztátora a vonaton helyezkedik el (emiatt a jármű nem képes olyan gyorsan haladni, mint lineáris szinkron motorral meghajtott társai), így a sínrész ára kedvezőbb, ám a járművek nehezebbek, bonyolultabb rendszert igényelnek, könnyebben elhasználódnak, mely a későbbiekben jelentősen megnöveli a karbantartási költségeket. Ezek a maglevek városi közlekedésre vannak tervezve. A pálya körülbelül 60 méteres szegmensekre van osztva, melyeket külön-külön látnak el árammal. Csak az a szakasz van ellátva árammal, amelyben a jármű az adott pillanatban tartózkodik, a többi szegmens kikapcsolható. Ez az energiatakarékos megoldás elméletileg megakadályozza két vonat összeütközését is (bár volt már rá példa, hogy egy próbakocsit ottfelejtettek a Transrapid sínein).

A maglev kocsijainak alvázáról „szoknya” lóg le, amire a hordmágneseket (kiterített rotort) szerelik. A „T” alakú betonoszlopokon nyugvó betonpályára a kiterített sztátort építik. Az áram mágneses hatására a betonpályáról néhány milliméter magasságba a kocsi felemelkedik. (Ez az emelkedés a Transrapid 08 típusnál 10 mm.) Az alsó karokba szerelt vezetők mágnesek, amelyeket a betonpálya aljára és peremére erősített mágneses sínek mindkét oldalon vonzanak. A mágneses erőt nagy teljesítményű számítógép szabályozza 100 kHz mintavételezési frekvenciával, ebből adódóan a kocsi „szoknyája” haladás közben nem súrolja a betonpálya oldalát vagy alját.

Amilyen egyszerű az elektro- és ferromágneses lebegtetés, valamint az előrehajtás elve, sokféle bonyolult részletet kell megoldani a sikeres működtetéshez.

Költségek[szerkesztés | forrásszöveg szerkesztése]

Pálya[szerkesztés | forrásszöveg szerkesztése]

A maglev számára teljesen különálló pálya szükséges. Nem használhatja a hagyományos vonatok pályáját, és a vonatok sem a maglev pályákat. Ez jelentősen megdrágítja a beruházást. Továbbá a maglev útját nem keresztezheti semmi. Emiatt vagy zárt pálya szükséges, vagy emelt. A kitérők is jóval bonyolultabbak és nagyobbak.

Előnye viszont, hogy a járművek nagyobb emelkedőket is le tudnak győzni, kisebb ívek is elegendőek. Ez bizonyos helyeken olcsóbb pályát eredményezhet.

Karbantartás[szerkesztés | forrásszöveg szerkesztése]

Mivel nincs súrlódás, a pálya élettartama jóval nagyobb és kevesebb karbantartást igényel.

Energiaköltségek[szerkesztés | forrásszöveg szerkesztése]

Szintén a súrlódás hiánya miatt az energiafelhasználása jóval kedvezőbb a hagyományos vasútnál.

Maglevek a világon[szerkesztés | forrásszöveg szerkesztése]

Jelenleg nagysebességű közforgalomban közlekedő maglev csak Kínában van. Ez a vonal 2003. január 1-jén nyílt meg a Pudong nemzetközi repülőtér és Sanghaj pénzügyi negyede között. A táv 30 kilométer, ezt a szerelvények körülbelül 7,5 perc alatt teszik meg, miközben 430 km/h-ra gyorsulnak fel.

Egy másik maglev a németországi Emslandban közlekedik a Siemens tesztpályáján. A pályahossz körülbelül 27 km és mindkét végén egy hurokkal tér vissza saját magába. Japánban jelenleg tervezés alatt van a Csúó Sinkanszen maglev vonal, mely a Tokió-Oszaka vonalon közlekedik majd.

Egyéb, egyszerű maglevek több városban is épültek.

Egyre több ország tervezi saját maglev-vonalának kiépítését, ám a kiépítés költségei túl magasak. A Kínában futó német Transrapid tökéletesen működik, ám lehetőségei nincsenek teljes mértékben kiaknázva. Ennek következménye: a maglev vonatok nem hoznak majd profitot. Tudni kell, hogy egy mágneses lebegtetésű vonat csak akkor hoz hasznot, ha elég nagy az utasok száma. Mivel az EMS és EDS rendszert használó maglev vonatok síneinek kiépítése igen költséges, így valószínű, hogy ezek a vonatok nem fognak elterjedni az egész világon. Már meg is jelentek az új mágneses lebegtetésű - SPM (Separated Permanent Magnet) - vonatok, melyek konvencionális síneken képesek futni, így csökkentve a költségeket.

Sebességrekordok[szerkesztés | forrásszöveg szerkesztése]

  • 1971 – Nyugat-Németország – Prinzipfahrzeug – 90 km/h
  • 1971 – Nyugat-Németország – Transrapid 02 – 164 km/h
  • 1972 – Japán – ML100 – 60 km/h – (emberi személyzettel)
  • 1973 – Nyugat-Németország – Transrapid 04 – 250 km/h (emberi személyzettel)
  • 1974 – Nyugat-Németország – EET-01 – 230 km/h (emberi személyzet nélkül)
  • 1975 – Nyugat-Németország – Komet – 401 km/h (Rakéta meghajtással) (emberi személyzet nélkül)
  • 1978 – Japán – HSST01 – 307 km/h (Rakéta meghajtással, készítő: Nissan) (emberi személyzet nélkül)
  • 1978 – Japán – HSST02 – 110 km/h (emberi személyzettel)
  • 1979 – Japán – ML500 – 517 km/h (emberi személyzet nélkül)
  • 1987 – Nyugat-Németország – Transrapid 06 – 406 km/h (emberi személyzettel)
  • 1987 – Japán – MLU001 – 400 km/h (emberi személyzet nélkül)
  • 1988 – Nyugat-Németország – TR-06 – 412 km/h (emberi személyzettel)
  • 1989 – Nyugat-Németország – TR-07 – 436 km/h (emberi személyzettel) 
  • 1993 – Németország – TR-07 – 450 km/h (emberi személyzettel)
  • 1994 – Japán – MLU002N- 431 km/h (emberi személyzet nélkül)
  • 1997 – Japán – MLX01 – 531 km/h (emberi személyzettel)
  • 1997 – Japán – MLX01 – 550 km/h (emberi személyzet nélkül)
  • 1999 – Japán – MLX01 – 548 km/h (emberi személyzet nélkül)
  • 1999 – Japán – MLX01 – 552 km/h (emberi személyzettel/Five formation) Guinness világrekord
  • 2003 – Németország – Transrapid 08 – 501 km/h (emberi személyzettel)
  • 2003 – Japán – MLX01 – 581 km/h (emberi személyzettel/Three formation) Guinness világrekord

Külső hivatkozások[szerkesztés | forrásszöveg szerkesztése]

Commons
A Wikimédia Commons tartalmaz Maglev témájú médiaállományokat.

Források[szerkesztés | forrásszöveg szerkesztése]

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

  1. Az angol magnetic levitation (mágneses lebegtetésű) kifejezés rövidítése