Logaritmus

A Wikipédiából, a szabad enciklopédiából

A logaritmus két szám között értelmezett matematikai művelet, a hatványozás egyik megfordított (inverz) művelete (a másik a gyökvonás). A pozitív b szám a alapú logaritmusán (ahol a egytől különböző pozitív szám) azt a kitevő-t értjük, melyre a-t emelve b-t kapjuk. Például 1000 10-es alapú logaritmusa 3, mert 10 harmadik hatványa 1000.

A b szám a alapú logaritmusát

\log_a b\;

jelöli, amely tehát az egyetlen valós szám, amelyre

a^{\log_{a}\,b}=b.

Például \mbox{ }_{\log_3 81=4}, ugyanis, ha a 81-et a logaritmus alapjának, azaz a 3-nak hatványaként írjuk fel, akkor a kitevő 4 lesz:

\log_3\,81 =4 \;\;\Leftarrow\;\; 81=3^{4}

A logaritmust John Napier vezette be a szorzást, hatványozást tartalmazó számolások megkönnyítésére. Az elnevezés a görög „λόγος” (logosz, arány) és „ἀριθμός” (arithmosz, szám) szavak összetételéből származik. A számítások megkönnyítésére logarléceket és logaritmustáblázatokat készítettek, amelyek hamarosan elterjedtek a tengerészetben, a tudományokban és a mérnökök között. Ezek az eszközök a logaritmus azonosságait használják fel. A logaritmus mai jelölése Leonhard Eulertől származik, aki elsőként kapcsolta össze az exponenciális függvénnyel.

A 10-es alapú logaritmust a természettudományokban és a mérnöki tudományokban használják. Jelölése: \operatorname{lg} x. A természetes logaritmus alapja az e Euler-konstans, és a matematikában széles körűen alkalmazzák. Jelölése \operatorname{ln} x. A 2-es alapú logaritmust a számítástudományban és az informatikában alkalmazzák. Jelölése egyszerűen \log x, az alap kiírása nélkül. Német nyelvterületen erre az \operatorname{ld} x jelet használják.

A logaritmikus skálák kis tartományon széles tartományú mennyiségeket képesek ábrázolni. Így működik például a látás és a hallás. A decibel egy olyan viszonylagos egység, ami az erő logaritmusának és az amplitudó logaritmusának arányát méri. A kémiában a pH a vizes oldatok kémhatását méri. A földrengések nagyságát is logaritmikus skálában mérik. A bonyolultságelméletben is megjelennek, például az összehasonlításos rendezések bonyolultsága legalább O(n · log n).

A valós számokon a logaritmus a hatványozás inverz művelete. Ez megmarad a komplex számok fölött is. Egy másik változat a diszkrét logaritmus, amit a kriptográfiában is használnak.

Jellemzés[szerkesztés | forrásszöveg szerkesztése]

Ahogy a logaritmus definíciója is mutatja, a pozitív számokon értelmezett (nem egy, pozitív alapú)

\log_a:\; x\mapsto \log_a x

függvény az a alapú exponenciális függvény inverze (egészen pontosan a képlet szerint a jobbinverze), vagyis az ax = expa(x) jelölést alkalmazva, minden pozitív x számra

\exp_a(\log_a(x))=x\,.

Emellett a logaritmusfüggvény balinverze is az a alapú exponenciális függvénynek:

\log_a(\exp_a(x))=x\,.

Eszerint a logaritmus művelete a következő eljárással állítja elő a kimenetét. A loga x az az utasítás, mely az x pozitív számot felírja az a alap valahányadik hatványaként, majd ennek a hatványnak a kitevőjét leolvassa és ezt adja értékül a loga x kifejezésnek:

\log_a x=\log_a a^n=n\,[1]

Például log101000=3, log10100000=5, log101 000 000 000=9, illetve log1010n=n. A tízes alapú logaritmus tehát „a 0-kat számolja meg”. Így az A szám számjegyeinek száma 10-es számrendszerben az (lg A)+1 szám egész része. Általában c-es számrendszerben felírt A szám számjegyeinek száma: (logcA)+1 egész része.

Jelölésrendszer[szerkesztés | forrásszöveg szerkesztése]

A számításokban leggyakrabban a tízes és a kettes alapú logaritmust, valamint az e alapú ún. természetes logaritmust használják. Ezek jelölésére országonként és tudományáganként különböző rövidítések használatosak.

Magyarországon a 10-es alapú logaritmust leggyakrabban

\mbox{lg}(x)\,

jelöli (például középiskolai tankönyvekben is). Az angolszász mintára készült számológépeken a tízes alapú logaritmus jele log(x). A tízes alapú logaritmust még közönséges logaritmusnak is nevezik. Kézi számolásokhoz egyszerű használni a tízes számrendszerhez való alkalmazkodás miatt:[2]

\mbox{lg}(10 x) = \mbox{lg}(10) + \mbox{lg}(x) = 1 + \mbox{lg}(x).\

Így a 10-es alapú logaritmus kapcsolódik a decimális jegyek számához: a számjegyek száma az a legkisebb egész, ami szigorúan nagyobb a szám 10-es alapú logaritmusánál.[3] Például \mbox{lg}1430 \approx 3,15 \,. A következő egész a 4, ami valóban megegyezik a számjegyek számával. A függvénytáblázatból a logaritmus törtrésze, a mantissza olvasható ki; a karakterisztikát a felhasználónak kell megadnia a szám nagyságrendje alapján.

A másik gyakran használt logaritmus a természetes logaritmus, aminek az alapja az Euler-féle szám, az e. Ennek jele általában

\ln(x)\,,

ami a latin „logarithmus naturalis” (természetes logaritmus) kifejezés rövidítése. Gyakran azonban, főleg a számítástudományban log(x) jelöli a természetes logaritmust, míg a tízes alapút log10(x). A matematikai analízisben széles körűen használják kellemes analitikai tulajdonságai miatt. Elterjedt a statisztikában, a gazdaságtani elméletekben, a fizikában, kémiában és egyes mérnöki alkalmazásokban is.

A kettes alapú logaritmust az információelméletben[4] és a számítógéptudományban használják, alkalmazkodva a kettes számrendszerhez. Az információelméletben a természetes logaritmus is előfordul.[5] A zeneelméletben szintén eleve adva van a kettes alap, mivel egy hang és oktávjának frekvernciájának aránya 2. A cent két szomszédos, egyenletesen temperált hang frekvenciájának arányának logaritmusa 1200-zal szorozva. A fényképészetben az expozíciós időt mérik kettes alapú logaritmikus skálán.[6]

Tulajdonságok[szerkesztés | forrásszöveg szerkesztése]

Alakja:

Logaritmus függvények

Összefüggések[szerkesztés | forrásszöveg szerkesztése]

A logaritmusfüggvény művelettartó leképezés a pozitív számok szorzással ellátott halmaza és a valós számok összeadással ellátott halmaza között. Az algebra szaknyelvén ez azt jelenti, hogy a loga:(0,+∞)\rightarrow R függvény izomorfizmus a ((0,+∞),\cdot) és az (R,+) csoport között. A szorzásból összeadást csinál, az osztásból kivonást, az 1-ből 0-t. Mondhatjuk, hogy a logaritmus függvény a hatványozást szorzásra, a szorzást összeadásra vezeti vissza. Tetszőleges a pozitív, nem 1 számra és x, y pozitív számra:

\log_a xy = \log_a x + \log_a y\,
\log_a \frac{x}{y} = \log_a x - \log_a y\,
\log_a x^k = k \log_a x \,
\log_a \sqrt[p]{x} = \frac {\log_a (x)} p

Az azonosságok a logaritmus x = b^{\log_b(x)} vagy y = b^{\log_b(y)} definíciójából helyettesítéssel származtathatók.

Az összeg logaritmusára nincs ismert azonosság.

Bármely logaritmus visszavezethető egy tetszőleges másik alapra:

\log_a b=\frac{\log_c b}{\log_c a}

A tudományos számológépek általában csak 10-es vagy természeteslogaritmust tudnak számolni.

Egy adott x pozitív számnak még a logb(x) logaritmusa is ismert egy ismeretlen b-re, akkor a b szám így számítható:

 b = x^\frac{1}{\log_b(x)}.

Analitikai tulajdonságok[szerkesztés | forrásszöveg szerkesztése]

A logaritmus mélyebb tanulmányozása a függvény fogalmára támaszkodik. Ez egy olyan reláció, ami értelmezési tartományának minden eleméhez hozzárendel egy, és csakis egy értéket. Ezekből az értékekből áll a függvény értékkészlete. A valós logaritmus, mint függvény a pozitív számokon értelmezett, és értéke befutja a teljes valós számkört.

Ahhoz, hogy a logaritmusfüggvény jóldefiniált legyen, meg kell mutatni, hogy a

b^x = y \,

egyenlet megoldható, és megoldása egyértelmű, ha b és y is pozitív, és b nem egyenlő eggyel. Ez a Bolzano-tétellel bizonyítható.[7] Eszerint egy folytonos függvény nem ugorhat át egy értéket; ha azon az intervallumon, ahol folytonos, felveszi az a és a b értékeket, akkor minden olyan értéket felvesz, ami a és b között van.

Ez megmutatható az f(x) = bx függvényre a fenti kikötésekkel. Mivel f akármilyen kicsi és akármilyen nagy pozitív értékeket is felvesz, így minden y > 0 számhoz található f(x0) és f(x1) alkalmas x0-ra és x1-re. Emiatt a Bolzano-tétel szerint f(x) = y megoldható. Továbbá, mivel f monoton nő, ha b 1-nél nagyobb, és monoton csökken, ha b 1-nél kisebb, a megoldás egyértelmű.[8]

Ez az egyértelmű megoldás y b alapú logaritmusa, logb(y). A fenti kikötéseknek megfelelő b-vel, mint alappal az y-hoz annak logaritmusát hozzárendelő függvény a logaritmusfüggvény, vagy logaritmus.

A logb(x) függvény alapvető jellemzője a fenti szorzatképlet:

\log_b(xy) = \log_b(x) + \log_b(y).

Pontosabban, ha b > 1, akkor a logaritmus az egyetlen monoton növő függvény, ami eleget tesz az f(b) = 1 és :f(xy)=f(x)+f(y). függvényegyenlet-rendszernek.[9]

Inverz függvény[szerkesztés | forrásszöveg szerkesztése]

Két függvény grafikonja
A logb(x) logaritmus függvény grafikonja (kék) megkapható a bx függvény grafikonjának (piros) tükrözésével az x = yegyenesre)

A hatvány logaritmusára vonatkozó képlet alapján minden x számra

\log_b \left (b^x \right) = x \log_b(b) = x.

Szavakkal: a b alapot x-edik hatványra emelve és ennek b alapú logaritmusát véve visszakapjuk a b számot.

Megfordítva, ha y pozitív szám, és

b^{\log_b(y)} = y

akkor először a logaritmust véve és erre emelve az alapot visszakapjuk az y számot. Tehát bármelyik műveletet végezzük előbb és a másikat később, mindannyiszor visszakapjuk az eredeti számot. Emiatt a b alapú logaritmus a b alapú hatványfüggvény inverz függvénye.[10]

Az inverz függvények közeli kapcsolatban állnak az eredeti függvénnyel. Grafikonjuk megkapható az x és az y koordináták felcserélésével, azaz az x = y egyenesre való tükrözéssel. A hatványfüggvény grafikonjának (t, u = bt) pontja az (u, t = logbu) pontot adja a logaritmus grafikonján, és megfordítva. Emiatt logb(x) tart a végtelenbe, ha x tart a végtelenbe, hogyha b nagyobb 1-nél. Ekkor logb(x) monoton nő. Ha b < 1, akkor a logb(x) függvény a mínusz végtelenhez tart. Ha x a nullához tart, és b > 1, akkor a logaritmus a mínusz végtelenhez tart; ha pedig b < 1, akkor végtelenhez tart.

Derivált és primitív függvény[szerkesztés | forrásszöveg szerkesztése]

A logaritmusfüggvény grafikonja egy pontjához húzott érintőjével
A természetes logaritmus grafikonja (zöld) és érintője az x = 1,5 pontban (fekete)

A függvények egyes analitikai tulajdonságai átvihetők az inverz függvényre.[7] Ilyen tulajdonság a folytonosság és a differenciálhatóság. Így, mivel f(x) = bx deriválható, ezért logb(y) is differenciálható. Szavakkal: egy folytonos függvény ott deriválható, ahol nincs töréspontja. Továbbá, mivel f(x) deriváltja ln(b)bx az exponenciális függvény tulajdonsága alapján, ezért a láncszabály szerint logb(x) deriváltja:[8][11]

\frac{d}{dx} \log_b(x) = \frac{1}{x\ln(b)}.

Így a b alapú logaritmusfüggvényt az (x, logb(x)) pontbeli érintő meredeksége 1/(x ln(b)). Továbbá ln(x) deriváltja 1/x, eszerint 1/x határozatlan integrálja ln(x) + c. Az általánosított f(x) általánosított függvény argumentummal:

\frac{d}{dx} \ln(f(x)) = \frac{f'(x)}{f(x)}.

A jobb oldalon álló hányados f logaritmikus deriváltja. AZ f'(x) derivált kiszámítása a ln(f(x)) felhasználásával logaritmuikus differenciálás néven ismert.[12] Az ln(x) primitív függvénye:[13]

\int \ln(x) \,dx = x \ln(x) - x + C.

Más alapú logaritmusokra a logaritmus alapváltásával egy szorzótényező jelenik meg.[14]

A természetes logaritmus mint integrál[szerkesztés | forrásszöveg szerkesztése]

Egy hiperbola egy szakasza alatti terület szürkével beszínezve.
A t természetes alapú logaritmusa megegyezik az f(x) = 1/x grafikonja alatt besötétített területtel

Ha t pozitív, akkor a természetes logaritmusa megegyezik 1/x dx integráljával 1 -től t-ig:

\ln (t) = \int_1^t \frac{1}{x} \, dx.

Más szavakkal, ln(t) megegyezik az x tengely és az 1/x grafikonja között 1-től t-ig terjedő területtel. Ez az analízis alaptételének és annak a következménye, hogy ln(x) deriváltja 1/x. Az egyenlet jobboldala a természetes logaritmus definíciója lehet. A logaritmus szorzásra és hatványozásra vonatkozó összefüggései is származtathatók ebből.[15] Például az 1=ln(tu) = ln(t) + ln(u) szorzatképlet:

 \ln(tu) = \int_1^{tu} \frac{1}{x} \, dx \ \stackrel {(1)} = \int_1^{t} \frac{1}{x} \, dx + \int_t^{tu} \frac{1}{x} \, dx \ \stackrel {(2)} = \ln(t) + \int_1^u \frac{1}{w} \, dw = \ln(t) + \ln(u).

Az első egyenlet két részre osztja az integrált, míg a második elvégzi az 1=w = x/t helyettesítést. A bal oldali területet felfelé megnyújtjuk t-szeresére, és vízszintesen összenyomjuk t-edrészére, akkor a terület területe változatlan. Megfelelően eltolva újra illeszkedni fog az 1=f(x) = 1/x függvény grafikonjához. Emiatt a bal terület, ami f(x) integrálja t-től tu-ig, ugyanaz, mint 1 integrálja u-ig. Ez a második egyenlőséget geometriailag demonstrálja.

A hiperbola lerajzolva kétszer. Az alatta levő terület két részre osztva
A geometriai bizonyítás bemutatása

A hatványra vonatkozó 1=ln(tr) = r ln(t) összefüggés hasonlóan bizonyítható:


\ln(t^r) = \int_1^{t^r} \frac{1}{x}dx = \int_1^t \frac{1}{w^r} \left(rw^{r - 1} \, dw\right) = r \int_1^t \frac{1}{w} \, dw = r \ln(t).

ahol a második egyenletben a változók helyettesítése: 1=w = x1/r.

A természetes számok reciprokainak összege a harmonikus sor:

1 + \frac 1 2 + \frac 1 3 + \cdots + \frac 1 n = \sum_{k=1}^n \frac{1}{k},

szorosan kapcsolódik a

\sum_{k=1}^n \frac{1}{k} - \ln(n),

különbséghez. Ha n tart a végtelenbe, akkor a különbség az Euler–Mascheroni-konstanshoz konvergál. Ez segít elemezni az algoritmusok bonyolultságát.[16]

A logaritmus egy másik integrál reprezentációja:

 \ln(x) = -\lim_{\epsilon \to 0} \int_\epsilon^\infty \frac{dt}{t}\left( e^{-xt} - e^{-t} \right)

Ez6 azzal igazolható, hogy értéke megegyezik x = 1-ben, és ugyanaz a deriváltja.

Transzcendencia[szerkesztés | forrásszöveg szerkesztése]

A nem algebrai valós számokat transzcendensnek nevezzük. Például a π és az e transzcendens számok, de például \sqrt{2-\sqrt 3} nem. [17] Majdnem minden valós vagy komplex szám transzcendens. A logaritmus egy példa a transzcendens függvényekre. A Gelfond–Schneider-tétel szerint a logaritmus értéke majdnem mindig transzcendens. [18]

Kiszámítása[szerkesztés | forrásszöveg szerkesztése]

Bizonyos esetekben a logaritmus könnyen számítható, például lg 1000 = 3. Általában hatványsorok vagy a mértani és számtani közepek egyenlőtlenségének felhasználásával számítják. Használhatók adott pontosságú táblázatok is a logaritmushoz.[19][20] A Newton-módszer szintén alkalmazható, mivel inverz függvénye, az exponenciális függvény gyorsan számítható.[21] Ha csak a bitenkénti eltolás és az összeadás érhető el alapműveletként, akkor keresőtáblák és CORDIC-szerű módszerek használhatók a logaritmus számítására. A bináris logaritmus algoritmus a kettes alapú logaritmust számolja sorozatos négyzetre emeléssel, ami ezt a kapcsolatot használja ki:

\log_2(x^2) = 2 \log_2 (x). \,

Hatványsorok[szerkesztés | forrásszöveg szerkesztése]

A logaritmus approximációjának bemutatása a logaritmus grafikonján
ln(z) Taylor-sora z = 1 körül.Az animáción az első 10 és a 99. és a 100 approximáció látható. Az approximációk nem konvergálnak a középponttól mért 1 távolságon kívül

Minden 0 < z < 2 valós számra: [22]


\ln (z)  = (z-1) - \frac{(z-1)^2}{2} + \frac{(z-1)^3}{3} - \frac{(z-1)^4}{4} + \cdots

Mivel ez a logaritmus Taylor-sora, ezért ez értelmezhető úgy is, hogy a


\begin{array}{lllll}
(z-1) & & \\
(z-1) & - &  \frac{(z-1)^2}{2} & \\
(z-1) & - &  \frac{(z-1)^2}{2} & + & \frac{(z-1)^3}{3} \\
\vdots &
\end{array}

függvények egyre jobban megközelítik a természetes logaritmust. Például, ha z = 1,5, akkor a harmadik approximáció értéke 0,4167, ami 0,011-gyel nagyobb, mint ln(1,5) ~ 0,405465. A sorral a természetes logaritmus akármennyire megközelíthető, ha elég sok tagot összegezünk.Az elemi analízisben ln(z)-t tekintik a sor határértékének. Azonban a konvergencia nem érvényes mindenütt az értelmezési tartományban, ugyanis ez a sorozat a természetes logaritmus z = 1 körüli Taylor-sora, ami nem konvergálhat nagyobb sugarú körben, mert z = 0-ban a logaritmus nincs értelmezve. A Taylor-sor z = 1, |z| < 1-re nyújt közelítést:


\ln (1+z) = z - \frac{z^2}{2}  +\frac{z^3}{3}\cdots \approx z.

Például a z = 0,1-re az első közelítés ln(1,1) ≈ 0,1, aminek hibája kevesebb, mint 5%, hiszen ln(1,1) ~ 0,0953.

Gyorsabban konvergáló sorok[szerkesztés | forrásszöveg szerkesztése]

Egy másik ismert sor az area hiperbolikus tangens függvényen alapul:


\ln (z) = 2\cdot\operatorname{arth}\,\frac{z-1}{z+1} = 2 \left ( \frac{z-1}{z+1} + \frac{1}{3}{\left(\frac{z-1}{z+1}\right)}^3 + \frac{1}{5}{\left(\frac{z-1}{z+1}\right)}^5 + \cdots \right ),

minden valós z > 0 számra.[22] A szigma jelöléssel

\ln (z) = 2\sum_{n=0}^\infty\frac{1}{2n+1}\left(\frac{z-1}{z+1}\right)^{2n+1}.

Ez a sor a Taylor-sorból származtatható, de gyorsabban konvergál annál, különösen, ha z közel van 1-hez. Ha z = 1,5, akkor az első három term által a logaritmusra adott közelítés hibája megközelítően 3 · 10-6. A gyors konvergencia tovább gyorsítható: Legyen y ≈ ln(z) egy pontatlan közelítés. Legyen A = \frac z{\exp(y)}, \,. Ekkor z logaritmusa: \ln (z)=y+\ln (A). \,. Minél jobb a kezdeti y közelítés, annál közelebb lesz A 1-hez. Ez az A az exponenciális hatványsorral számítható, ami gyorsan konvergál, ha az adott y nem túl nagy. A nagyobb számok logaritmusa kisebb számok logaritmusának összegére bontható, például ha z = a · 10b, akkor ln(z) = ln(a) + b · ln(10).

Az egészek logaritmusa egy rokon módszerrel számolható. A fenti sor alapján:

\ln (n+1) = \ln(n) + 2\sum_{k=0}^\infty\frac{1}{2k+1}\left(\frac{1}{2 n+1}\right)^{2k+1}.

Ha az n szám logaritmusa ismert, akkor ez alapján számolható log(n+1).

A számtani-mértani közepek módszere[szerkesztés | forrásszöveg szerkesztése]

A számtani-mértani közepek módszere egy viszonylag pontos közelítést ad a természetes logaritmusra. A következő képlet ln(x)-et 2p pontossággal (vagy p jegy pontossággal) közelíti (Carl Friedrich Gauss nyomán):[23][24]

\ln (x) \approx \frac{\pi}{2  M(1,2^{2-m}/x)} - m \ln (2).

Itt M(x,y) x és y számtani-mértani közepét jelöli. Ez úgy kapható, hogy először kiszámoljuk a pozitív x és y számok számtani és mértani közepét. Ezután ezt ismételgetjük a megkapott két számmal. Ezek gyorsan konvergálnak egy közös határértékhez, az M(x,y) számtani-mértani középhez. Az m szám a pontosságot biztosítja. Nagyobb m-ekhez az M(x,y) pontosabb értéke kell, de az eredmény is pontosabb. A π és az ln(2) konstansok más módszerekkel számolhatók.

Negatív és komplex számok logaritmusa[szerkesztés | forrásszöveg szerkesztése]

A poláris alak bemutatása: egy pont, aminek helyét nyíl mutatja, az x tengellyel bezárt szögével és hosszával is leírható
A z = x + iy komplex szám poláris alakja. Az argumentum nem egyértelmű: φ és φ' is argumentuma z-nek.
Sűrűségi ábra. A középen egy fekete pont. A negatív tengelyen a szín hirtelen megváltozik, máshol azonban simán megy át
A komplex logaritmus főága, Log(z). A fekete pontz = 1-ben a nulla abszolútértéknek felel meg. A telítettebb színek a nagyobb abszolútértéket, a szín az argumentumot jelöli

A logaritmus általánosítható minden, nullától különböző komplex számra, így a negatív számokra is. Adott z komplex szám természetes logaritmusa az a komplex szám, ha e^a=z.\, A más alapú logaritmusok ebből számíthatók. Ez azonban nem egyértelmű.

  • Nézzük meg egy z = a+bi komplex szám logaritmusát:

log(z) = ln(r) + i*arg(z), ahol a valós szám, r a z komplex szám abszolútértéke, mely a r=\sqrt{x^2+y^2}. \, képlettel számítható ki és arg(z) pedig a z komplex szám és a valós tengely pozitív része által bezárt szög (radiánban). Az argumentum nem egyértelmű; ha α argumentuma a z komplex számnak, akkor φ + 2π és φ - 2π is argumentuma z-nek. Ugyanis a 2π hozzáadása vagy kivonása a komplex számsík egy 360 fokos forgatásnak felel meg, ami minden komplex számot önmagára képez. Az argumentum főértéke az a φ, amire −π < φ és φ ≤ π. Jelölése Arg(z).[25] (An alternative normalization is 0 ≤ Arg(z) < 2π.[26])

A komplex szinusz és koszinusz, vagy a komplex exponenciális függvény felhasználásával r-re és φ-re rendre a következők teljesülnek:[27]

\begin{array}{lll}z& = & r \left (\cos \varphi + i \sin \varphi\right) \\
& = & r e^{i \varphi}.
\end{array} \,

Innen következik, hogy e a-adik hatványa z, ha

a = \ln (r) + i ( \varphi + 2 n \pi ), \,

ahol φ a z argumentumának főértéke, és n tetszőleges egész. Minden ilyen a érték logaritmusa z-nek. Ezekből végtelen sok van, szemben az egyértelmű valós logaritmussal. A logaritmus egyenletei erre a végtelen értékű logaritmusra megmaradnak. Az Arg(z) = a-val definiált érték a logaritmus főértéke, Log(z). A pozitív számok argumentumának főértéke 0, így a komplex logaritmus főértéke valós szám, és megegyezik a valós logaritmussal. A főértékre szorítkozva azonban elvesznek az azonosságok, mert az egyenlőség lehet, hogy a logaritmus egy másik értékét válasdztva teljesülne.[28]

A jobb oldali kép a természetes logaritmus főágát mutatja be. A negatív oldalon a szín az argumentum ugrása miatt változik meg hirtelen. Ez csak azzal kerülhető el, hogy az argumentum nagyságára nem teszünk kikötést, de ekkor visszakapjuk a végtelen értékű logaritmust. Habár a negatív számok logaritmusa is értelmezett a komplex számsíkon, a negatív számok logaritmusának nincs főértéke.

  • Egy komplex szám alapú logaritmust pedig kiszámíthatunk az előbbi összefüggések alapján,

logw(z) = log(z) ÷ log(w), ahol w és z komplex szám

  • Negatív számok logaritmusa kiszámítható az előző összefüggésekkel, ugyanis minden valós szám egyben komplex szám is.

loga(b) = ln(|b|)+i*π, ahol b egy negatív szám

  • Az eredmény képzetes része π, mert minden negatív szám az arg függvényben i*π-t ér. Most nézzünk meg pár példát:

1. Példa:

log(-30)=ln(30)+i*π

Ellenőrzés:
10ln(30)+i*π=e(ln(30)+i*π)*log(10)=eln(30)*(cos(π)+i*sin(π))=30(-1+0*i)=-30

2. Példa:

logi/2(-1/2) = log(-1/2) / log(i/2) = (ln(1/2)+i*π) / (ln(1/2)+i*π/2)≈ 0,050647 + i*0,361058

Ellenőrzés:
(i/2)(ln(1/2)+i*π)/(ln(1/2)+i*π/2)=e(ln(1/2)+i*π)/(ln(1/2)+i*π/2) * (ln(1/2)+i*π/2)=eln(1/2)+i*π=eln(1/2)*(cos(π)+i*sin(π))=-1/2

Más exponenciális függvények inverzei[szerkesztés | forrásszöveg szerkesztése]

A matematikában több részterületen is használják a hatványozást, így az inverz függvények is szóba kerülnek. Például a mátrixok hatványozásának egyik inverz függvénye a többértékű mátrix logaritmus.[29] Egy másik példa a p-adikus számokon értelmezett p-adikus logaritmus, ami a p-adikus exponenciális inverze. Mindezeket a valós Taylor-sor alapján definiálják.[30] A differenciálgeometriában egy exponenciális leképezés egy sokaság egy pontjabeli érintőteret a pont környezetére képezi. Ennek inverzét szintén logaritmikus leképezésnek nevezik.[31]

A véges csoportok körében egy elem hatványa az elem önmagával való szorzásával kapható meg. Mivel véges csoportban az elemek rendje véges, negatív kitevőkre nincs szükség, mivel az elemek inverze is előáll pozitív kitevős hatványként. Az x csoportelem b csoportelem alapú diszkrét logaritmusa az az egész n szám, ami megoldja az

b^n = x,\,

egyenletet. Jelen ismereteink szerint míg a hatványozás véges csoportokban gyorsan elvégezhető, addig a diszkrét logaritmus bizonyos csoportokban nehezen számítható. Ezt az aszimmetriát kihasználják a nyilvános kulcsú titkosírásban, például a Diffie–Hellman-kulcscsere eljárásban, ami lehetővé teszi a titkosírás kulcsának cseréjét nyilvános csatornán. [32] A Zech-féle logaritmus véges testek multiplikatív csoportján értelmezett diszkrét logaritmus.[33]

Alkalmazások[szerkesztés | forrásszöveg szerkesztése]

  • A fenti tulajdonságok segítségével, ha minden szám logaritmusát tudjuk, akkor a szorzások csupán összeadás műveletével elvégezhetőek, sőt, a hatványozást először szorzásra visszavezetve szintén két összeadással elvégezhetjük. A kitevők összeadását a logaritmus értékeket skálájában tartalmazó logarléc használatakor egyszerű tologatással megoldhatjuk. A logarlécet napjainkban már nemigen használják, de az elv továbbra is használható például számológépekben.
  • A logaritmus használatával mennyiségek sok nagyságrendjét egy skálára sűríthetjük. Ennek hasznosságát gyakran a gyakorlat és természet törvényszerűségei is alátámasztják. A különböző fizikai mennyiségék (hangerősség, hangmagasság, fényintenzitás stb.) által keltett, általunk érzékelt fiziológiai érzet a fizikai jel (teljesítményének) logaritmusával arányos. Ez indokolja a logaritmussal arányos decibel-skálák bevezetését. Logaritmikus továbbá a földrengés erősségét jelző Richter-skála is, és számos további példa adható.
  • A hangmagasság érzete a hang frekvenciájának logaritmusával arányos, azaz például egyenletes léptéknek észlelt oktávok rendre a frekvencia 2-, 4-, 8-szorosát jelentik.
  • A természetben talált legtöbb összefüggés (például fizikai képlet) hatványfüggvény alakú. Ha mindkét tengelyen szereplő értékeknek logaritmusát ábrázoljuk, az ún. log-log ábrán bármely hatványfüggvény lineáris alakot vesz fel, a meredekség pedig a kitevőt adja meg:
y=c x^\alpha
\log{y}=\log{c} + \alpha \log x
Y=\alpha X+ C
  • A fenti elvet használják ki a gyakran alkalmazott különböző logaritmikus grafikonokon, például a Bode-diagram, amely egy rendszer átviteli függvényének log-log ábrázolása.