Mértani közép

A Wikipédiából, a szabad enciklopédiából

A mértani közép a matematikában a középértékek egyike. Két nemnegatív szám mértani (geometriai) középarányosa egyenlő a két szám szorzatának négyzetgyökével. Hasonlóan, több nemnegatív szám mértani közepe a számok szorzatának annyiadik gyöke, ahány számot vettünk. Jele általában G vagy M.

Általános definíció[szerkesztés]

Az nem negatív számok G mértani közepe:


Adott nemnegatív valós számok mértani középértéke nem lehet kisebb, mint a számok legkisebbike, és nem lehet nagyobb, mint a számok legnagyobbika:


Súlyozott mértani közép[szerkesztés]

Ha nemnegatív számok, pedig olyan nemnegatív számok amikre

teljesül, akkor a számok (súlyokkal súlyozott) súlyozott mértani közepe az

szám.

A közönséges definíció ennek speciális esete, amikor

Geometriai interpretáció[szerkesztés]

Az és számok mértani közepe az a szám, ami annak a négyzetnek az oldalhosszúsága, aminek területe egyenlő az és oldalú téglalap területével.

Ez meg is szerkeszthető a Pitagorasz-tétel és a magasságtétel alapján:

Egy egyenes szakaszra felmérjük az és hosszú szakaszokat. Felezzük meg az szakaszhosszt, és húzzunk egy félkörívet a felezőpont körül sugárral (Thalész-kör). Állítsunk merőlegest abban a pontban, ami az a és a b szakasz határpontja. A körív és a merőleges által kimetszett szakasz hossza a keresett mértani közép.

Három szám, , és mértani közepe az a szám, ami annak a kockának az oldalhosszúsága, aminek térfogata egyenlő az , és oldalú téglatest térfogatával. Hasonlók igazak több számra és magasabb dimenziós hiperkockákra.

Tulajdonságai[szerkesztés]

Komplex számokra nem szokás kiterjeszteni, mivel a komplex gyökvonás nem egyértelmű.

A mértani közép nem kisebb, mint a legkisebb adott szám, és nem nagyobb a legnagyobbnál.

Ha az egyik szám nulla, akkor a mértani közép is nulla.

Amennyiben a sorozat összes tagja pozitív, mértani sorozatban – az elsőt kivéve – bármelyik tag a két szomszédjának mértani közepe. Általában tag az és tagok mértani közepe, ha pozitív egészek.

Kapcsolat a számtani középpel és a logaritmussal[szerkesztés]

Ha egymással nem egyenlő adatokat úgy változtatunk, hogy megmaradjon a számtani közepük, akkor mértani közepük mindig csökken.[1]

A mértani és a számtani közép egyenlőtlensége:

Ezzel ekvivalens állítás:

Másként kifejezve:

Ha
ha pedig van akkor
Ahol m is a negatív számok száma.

Ezt néha log-középnek nevezik, ami nem tévesztendő össze a logaritmikus középpel. Ez azt jelenti, hogy vesszük a logaritmusokat, kiszámoljuk a számtani közepüket, majd ennek vesszük az exponenciálisát, az eredeti számok mértani közepét kapjuk. Egyes programozási nyelvek előnyben részesítik ennek az implementációját, mert így elkerülhető az alul- és a túlcsordulás is.

Kapcsolat a számtani és a harmonikus középpel[szerkesztés]

Fennáll még az összefüggés:

A mértani közép számtani-harmonikus közép is, ami azt jelenti, hogy ha definiáljuk az és sorozatokat, mint:

és

ahol a két sorozat előző értékeinmek harmonikus közepe, akkor és tart az és mértani közepéhez.

A Bolzano–Weierstrass-tétel biztosítja, hogy a két sorozat határértéke megegyezzen, és emellett az is belátható, hogy a mértani közép megmarad:

Konstans idejű számítások[szerkesztés]

Ha a mértani közepet arra használják, hogy megbecsüljék az átlagos növekedési ütemet, és a kezdőérték , és ismert még az érték, akkor a mértani közép becsülhető úgy, mint

A becslés annyira jó, amennyire az sorozat mértani.

A szomszédos elemek hányadosa , ezek mértani közepe :

Normalizálási tulajdonság[szerkesztés]

A mértani középre jellemző, hogy:

ami a többi középre csak speciális esetben teljesül. Emiatt a mértani közép használható normalizált mennyiségek átlagolására, míg más közepek nem.[2] Például, ha számítógépek sebességét hasonlítják össze, vagy heterogén adatforrásokból származó mennyiségeket átlagolnak, például várható élettartam, képzettség, csecsemőkori halálozás. Ekkor a számtani és a harmonikus közép, de más közepek is attól függően változnak, hogy mihez viszonyítunk. Például különböző programok végrehajtási ideje:

  A számítógép B számítógép C számítógép
Első program 1 10 20
Második program 1000 100 20
Számtani közép 500,5 55 20
Mértani közép 31,622 . . . 31,622 . . . 20
Harmonikus közép 1,998 . . . 18,182 . . . 20

A számtani és a mértani közép szerint a C számítógép a leggyorsabb. De ha normalizáljuk az értékeket, akkor a számtani közép bármelyik gépet mutathatja leggyorsabbnak. Például A eredményeire normalizálva kapjuk, hogy A a leggyorsabb:

  A számítógép B számítógép C számítógép
Első program 1 10 20
Második program 1 0,1 0.02
Számtani közép 1 5,05 10,01
Mértani közép 1 1 0,632 . . .
Harmonikus közép 1 0,198 . . . 0,039 . . .

B eredményeire normalizálva kapjuk, hogy a számtani közép szerint B a leggyorsabb, de a harmonikus közép szerint A a leggyorsabb:

  A számítógép B számítógép C számítógép
Első program 0,1 1 2
Második program 10 1 0,2
Számtani közép 5,05 1 1.1
Mértani közép 1 1 0,632
Harmonikus közép 0,198 . . . 1 0,363 . . .

C-re skálázva a számtani közép szerint a C, a harmonikus közép szerint az A a leggyorsabb:

  A számítógép B számítógép C számítógép
Első program 0,05 0,5 1
Második program 50 5 1
Számtani közép 25,025 2,75 1
Mértani közép 1,581 . . . 1,581 . . . 1
Harmonikus közép 0,099 . . . 0,909 . . . 1

A mértani közép mindhárom esetben ugyanazt a sorrendet adja.

Azonban a mértani közép használatának korrektsége megkérdőjelezhető,[3] ugyanis attól, hogy a normalizálás nem hat a mértani középpel számított sorrendre, nem jelenti azt, hogy korrekt. Általában súlyozzák a programokat, a számtani középpel kiszámítják az átlagos futási eredményt, majd ezt normalizálják. A fenti táblázatok egyszerűen különbözőképpen súlyozzák a programokat, ezért adnak különböző eredményt a számtani és a harmonikus közepekre. Az első egyenlő súlyt ad a két programnak; a másodikban 1/1000 a második program súlya az elsőhöz képest, a harmadikban 1/100 a második és 1/10 az első program súlya. A fő ellenérv az, hogy a mértani közép számításában időket szorzunk össze, aminek nincs fizikai jelentése. Nem úgy, mint a számtani közép esetén, ahol az összidőt kell kiszámítani. Az idővel fordítottan arányos mennyiségeket inkább harmonikus középpel átlagolják.

Alkalmazása[szerkesztés]

A mértani közepet multiplikatív – magyarul összeszorozható – mennyiségek átlagolására használhatjuk (például infláció, banki kamatok, amortizáció).

Arányos növekedés[szerkesztés]

A mértani közép alkalmasabb az arányos növekedés leírására, mint a számtani; akár exponenciális növekedés esetén, akár változó arányú növekedés esetén. Így számítják például a compound annual growth rate (CAGR) mennyiséget. Egy időszakra az átlagos növekedési sebességet adja meg, amivel ugyanannyi kezdőtőkéből ugyanazt a végösszeget lehet nyerni exponenciális növekedéssel.

Tegyük fel, hogy egy narancsfa az első évben 100, az azt követő években rendre 180, 210 és 300 narancsot terem. Ez megfelel 80%, 16,6666% és 42,8571%-os növekedésnek. A számtani közép szerint az átlagos növekedés 46,5079%. De ha 100 naranccsal kezdünk, és minden évben 46,5079%-kal növeljük a termést, akkor a végén 314 narancsot kapunk, ami nem egyezik a végeredménnyel.

Ha a mértani középpel számolunk, akkor a 80%-os növekedés megfelel az 1,80-nal való szorzásnak. Hasonlóan a többi tényező 1,166666 és 1,428571, ezek mértani közepe . Az átlagos növekedés évi 44,2249%. Azaz 100 naranccsal kezdve ezzel a növekedéssel a végeredmény 300 narancs, ahogy kell.

A mértani közepet több pénzügyi index számítására is használták, éppen e tulajdonsága miatt; például az FT 30 index számításához a múltban és az Európai Unióban és az Egyesült Királyságban használt "RPIJ" kiszámításához az infáció mérésére. Ezzel az indexek mozgása jobban mérhető, mint számtani középpel.[4]

Társadalomtudományok[szerkesztés]

A United Nations Human Development Indexet 2010 óta mértani középpel számolják, mivel jobban tükrözi a különböző dimenziójú statisztikák összehasonlítását. Így például a születéskor várható élettartam 1%-os csökkentése ugyanúgy csökkenti 1%-kal a HDI-it, mint a jövedelem vagy a képzettség ugyanekkora csökkenése. A számtani középhez képest jobban figyelembe veszi az eltérést az átlagtól.[5] Jegyezzük meg, hogy mivel az adatok között vannak olyanok, amiket nem a fenti módon normalizáltak, hanem statisztikailag végezték a normalizálást, azaz:

.

Emiatt a mértani közép kevésbé természetes választás, mint a fenti esetben.

Képarány[szerkesztés]

A Kerns Powers által felhasznált képarányok a kompromisszumos SMPTE 16:9 képarány megtalálásához.[6] TV 4:3/1,33 piros, 1,66 narancssárga, 16:9/1,77 kék, 1,85 sárga, Panavision/2,2 sötétlila és CinemaScope/2,35 püspöklila

A mértani közepet kompromisszumos képarányként használják filmeken és videókon, mivel ezzel mindkettő ugyanannyit torzul, vagy ugyanakkora terület lesz levágva belőlük. Ha a két arányt képviselő egyenlő területű téglalapot egymásra helyezünk párhuzamos oldalakkal és közös középponttal, akkor a metszet téglalap és a legkisebb befoglaló téglalap oldalarányai is a két téglalap oldalarányainak mértani közepét adják.

Az SMPTE által választott 16/9 közelítőleg a 2,35 és a 4:3 képarányokat egyensúlyozza, mivel azok mértani közepe , és . Ezt Kerns Powers a fent leírt módon találta meg kivágott és egymásra helyezett téglalapokkal.[6] A képarányok közül a két szélsőérték a meghatározó, a többi akár ott se lett volna.

A 16:9 és a 4:3 közötti képarány kompromisszumaként a 14:9 képarányt (...) használják,.[7] ami a kettő számtani közepe. A mértani közép de ez már annyira közel van, hogy alig vehető észre (kisebb, mint 2%).

Más geometriai jelentések[szerkesztés]

A mértani közepet több nyelven geometriai középnek nevezik, geometriai jelentősége miatt.

  • Derékszögű háromszögben az átfogóhoz tartozó magasságvonal hossza az átfogó két szeletének mértani közepe. Ez a magasságtétel.
  • Ellipszisben a fél kistengely mértani közepe az ellipszis és az egyik fókusz távolságának. Hasonlóan, a fél nagytengely és a semi-latus rectum mértani közepe is. A fél nagytengely mértani közepe a diretrix és az egyik fókusz, illetve az egyik fókusz és a középpont távolságának.
  • Egy gömb horizontjának távolsága a gömb legközelebbi és legtávolabbi pontjától mért távolságának mértani közepe.
  • S.A. Ramanujan (1914) mindkét közelítése a kör négyszögesítésére mértani közepet használ.
  • A tizenhétszög egyik szerkesztésében (T. P. Stowell, 1818) is megjelenik a mértani közép.

Visszaverődés elleni védelem[szerkesztés]

A fényvisszaverődés minimalizálása érdekében az n0 és n2 törésmutatójú anyagok határán úgy kell kialakítani a bevonatot, hogy annak törésmutatója n1 a mértani közép legyen: .

Jelfeldolgozás[szerkesztés]

A jelfeldolgozásban a mértani közepet használják a spektrum alakjának mérésére, vagyis arra, hogy mennyire lapos a spektrum. A hatványspektrum mértani közepét annak számtani közepére emelik.

Lásd még[szerkesztés]

Források[szerkesztés]

Fordítás[szerkesztés]

Ez a szócikk részben vagy egészben a Geometric mean című angol Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel.

  1. Mitchell, Douglas W. (2004). „More on spreads and non-arithmetic means”. The Mathematical Gazette 88, 142–144. o.  
  2. Fleming, Philip J. (1986). „How not to lie with statistics: the correct way to summarize benchmark results”. Communications of the ACM 29 (3), 218–221. o. DOI:10.1145/5666.5673.  
  3. Smith, James E. (1988). „Characterizing computer performance with a single number”. Communications of the ACM 31 (10), 1202–1206. o. DOI:10.1145/63039.63043.  
  4. Rowley, Eric E.. The Financial System Today. Manchester University Press (1987). ISBN 0719014875 
  5. http://hdr.undp.org/en/statistics/faq/
  6. ^ a b (2001) „TECHNICAL BULLETIN: Understanding Aspect Ratios”, Kiadó: The CinemaSource Press. (Hozzáférés ideje: 2009. október 24.)  
  7. Sablon:Cite patent