Számtani közép

A Wikipédiából, a szabad enciklopédiából

Számtani vagy aritmetikai középértéken darab szám átlagát, azaz a számok összegének -ed részét értjük. A számtani közepet általában betűvel jelöljük:

A kiindulási értékeket összeadjuk, majd az összeget elosztjuk az összeadott számok darabszámával. A hétköznapi életben ezt simán "átlag"nak mondjuk.

Értelmezése[szerkesztés]

Az a és a b számok számtani közepe m akkor és csak akkor, ha m-a=b-m.

Legyenek ugyanolyan eloszlású, egymástól független valószínűségi változók μ várható értékkel és σ szórással, akkor az középérték szintén μ körül ingadozik, és szórása kisebb, . Ha tehát egy valószínűségi változó várható értéke és szórása is véges, akkor a Csebisev-egyenlőtlenség miatt a mintaközép a minta elemszámának növelésével sztochasztikusan konvergál a valószínűségi változó várható értékéhez. Tehát a számtani közép alkalmas a várható érték becslésére, viszont érzékeny a nem tipikus adatokra (lásd: medián).

A számtani középre vonatkozó alaptétel[szerkesztés]

Tétel: Ha valós számok, és , vagyis az és számok számtani közepe, akkor . Szemléletesen ez azt jelenti, hogy az és a számoktól egyenlő távolságra (vagyis „középen”) helyezkedik el a számegyenesen. Valóban, hiszen ha , akkor és .

Adott valós számok számtani középértéke nem lehet kisebb, mint a számok legkisebbike, és nem lehet nagyobb, mint a számok legnagyobbika:


Algebrai tulajdonságok[szerkesztés]

Ha a tetszőleges számsorozatot tetszőlegesen hosszan bővítjük e számok számtani közepével, akkor az így kibővített sorozat tagjainak számtani középértéke megegyezik az eredeti számtani középpel:

A számtani és mértani közép közötti egyenlőtlenség:

Számtani sorozatok[szerkesztés]

Számtani sorozatban – az elsőt kivéve – bármelyik tag a két szomszédjának számtani közepe. Általában tag az és tagok számtani közepe, ha pozitív egészek. Ennek megfordítása is igaz (ha egy sorozatban bármely két tag a szomszédos tagok számtani közepe, akkor az egy számtani sorozat), mégpedig egyszerű következménye a számtani középre vonatkozó alaptételnek.

Súlyozott számtani közép[szerkesztés]

A számtani középnek súlyozott változata is értelmezhető. Alkalmazzák például a keverési feladatokban, a valószínűségszámításban és a statisztikában.

A súlyozott számtani közép számítása:

.

ahol az xi számok rendre a wi súlyokkal szerepelnek.

A keverési feladatokban xi jelöli a koncentrációt vagy a hőmérsékletet, és wi a térfogatot, vagy a tömeget.

A statisztikai alkalmazásokban az xi adatpontokhoz tartozó wi súlyok azt mutatják, hogy az adott adatpont hányszor jelenik meg a mintában.

Több minta összetevésekor az egyes minták középértékeit a megfelelő minták elemszámával súlyozzák.

A valószínűségszámításban, ha az valószínűségi vektorváltozók közös várható értéke , de szórásuk rendre , akkor a súlyozott középérték körül ingadozik, és szórásnégyzete

.

Ha most

,

akkor

.

A Cauchy–Bunyakovszkij–Schwarz-egyenlőtlenség alapján

.

A választás minimalizálja a középérték szórását. A súlyok választása mutatja, hogy melyik adatnak mekkora fontosságot tulajdonítunk.

Alkalmazás[szerkesztés]

A számtani közepet additív – magyarul összeadható – mennyiségek átlagolására használjuk (például magasságok átlaga, testsúlyok átlaga stb.)

Függvény középértéke[szerkesztés]

A Riemann-integrálható függvények középértéke a számtani közép általánosításaként fogható fel.

Az Riemann-integrálható függvény középértéke

Ha most egyenlő osztásközöket veszünk, ahol osztópontok, és a két szomszédos osztópont közötti távolság , akkor az

számtani közép tart az középértékhez.

Ha f folytonos, akkor az integrálszámítás középértéktétele szerint létezik , amire , a függvény legalább egy helyen felveszi középértékét.

A középértéknek is van súlyozott változata, ahol is a súlyfüggvény pozitív minden -re. Ekkor a súlyozott középérték

.

Az mértéktérben, ahol , a Lebesgue-integrálható függvények középértéke

.

Valószínűségi tér esetén, ahol , a középérték az

alakra hozható, ami éppen az f(x) várható értéke.

Kapcsolat más közepekkel[szerkesztés]

Legyen f egy I intervallumon értelmezett szigorúan növő folytonos függvény. Legyenek továbbá adva a súlyok. Ekkor az számok -vel súlyozott kvázi-aritmetikus közepe

.

Nyilván

Így a különböző f függvényekkel különböző közepek definiálhatók. visszaadja a számtani közepet, a mértani közepet, és a k-adik hatványközepet.

Mindezek a közepek függvényekre is általánosíthatók. Ehhez azt kell még kikötni, hogy az f függvény értelmezési tartománya tartalmazza az u függvény képhalmazát. Ekkor az u függvény középértéke:

Lásd még[szerkesztés]

Források[szerkesztés]