Nagy számok törvénye

A Wikipédiából, a szabad enciklopédiából

A nagy számok törvénye a valószínűségszámítás egyik alapvető tétele. A törvény azt mondja ki, hogy egy kísérletet sokszor elvégezve az eredmények átlaga egyre közelebb lesz a várható értékhez. Precízebb megfogalmazásban, ha azonos eloszlású független valószínűségi változók véges várható értékkel, akkor .

A törvénynek van egy gyenge és egy erős változata attól függően, hogy pontosan mit értünk konvergencia alatt: a gyenge változat szerint sztochasztikus konvergenciát, azaz

teljesül minden pozitív -ra, az erős szerint pedig 1 valószínűségű (majdnem biztos) konvergenciát, azaz

.

Alkalmazásai[szerkesztés]

  • Biztosítás: a biztosítók meg tudják becsülni a jövőbeli kifizetések nagyságát. Minél több a biztosított személy, vagy tárgy, annál kisebb a véletlen befolyása. A nagy számok törvényével azonban az egyes káresemények nem jósolhatók meg. A tétel alkalmazhatóságát ronthatják az előre nem látható események, például az éghajlatváltozás.
  • Orvostudomány: az új kezelési módszerek vizsgálatában a nagy elemszámú minta csökkenti a véletlen befolyását, habár teljesen nem tudja kiküszöbölni.
  • Természettudományok: a mérési hibát több mérés átlagolásával csökkenteni lehet.

Példa[szerkesztés]

Egy szabályos tömegeloszlású pénzdarab ugyanolyan valószínűséggel esik fejre, mint írásra. Minél többször dobjuk fel, annál valószínűbb, hogy aránylag a dobások felében kapunk fejet.

A tétel egy gyakori félreértése, különösen a szerencsejátékosok körében, hogy az következne belőle, hogy a véletlen események valamiképpen kiegyenlítik egymást (például ha sokszor egymás után piroson állt meg a rulett, akkor a következőkben sokszor kell feketén megállnia, hogy a pirosok és a feketék száma megint nagyjából egyenlő legyen). Valójában ennek az ellenkezője igaz: az idő előrehaladtával egyre nagyobb abszolút eltérés várható az eredmények összege és a várható érték n-szerese között, azonban ez az eltérés lassabban nő, mint n, így a relatív eltérés csökken.

A nagy számok gyenge törvénye[szerkesztés]

Azt mondjuk, hogy az valószínűségi változók eleget tesznek a nagy számok gyenge törvényének, ha a tapasztalati várható értékre, és minden pozitív ε-ra:

.

Különféle feltételek kellenek a gyenge konvergencia teljesüléséhez. Egy ilyen feltétel szerint, ha az valószínűségi változók szórásai közös korlát alatt maradnak, és a változók korrelálatlanok, vagyis minden -re.

Hincsin feltételei szerint, ha a sorozat valószínűségi változói függetlenek, és egyforma eloszlásúak, és várható értékük véges, akkor szintén teljesül a gyenge konvergencia.

Hincsin tétele levezethető a Csebisev-egyenlőtlenségből.

A nagy számok erős törvénye[szerkesztés]

Azt mondjuk, hogy a valószínűségi változók sorozata eleget tesz a nagy számok erős törvényének, ha a

tapasztalati várható értékre:
.

A nagy számok erős törvénye teljesül például akkor, ha a valószínűségi változók függetlenek, és egyforma eloszlásúak. N. Etemadi feltételei szerint elég, ha egyforma eloszlásúak,és páronként függetlenek; a szórás végessége nem kell.

Források[szerkesztés]

  • Denkinger Géza: Valószínűségszámítás, NEMZETI TANKÖNYVKIADÓ, 2001
  • H.-O. Georgii: Stochastik, 2. Auflage, de Gruyter, 2004.
  • R. Durrett: Probability: Theory and Examples, 3rd ed., Duxbury, 2004.
  • K. Mosler, F. Schmid: Wahrscheinlichkeitsrechnung und schließende Statistik, 3. Auflage, Springer, 2008.