Geotermikus energia

A Wikipédiából, a szabad enciklopédiából
A Nesjavellir geotermikus erőmű Izlandon
Geotermikus erőmű a Fülöp-szigeteken

A geotermikus energia a Föld belső hőjéből származó energia. A Föld belsejében lefelé haladva kilométerenként átlag 30 °C-kal emelkedik a hőmérséklet. A földkérgen tapasztalható geotermikus energia részben a bolygó eredeti létrejöttéhez (20%), részben a radioaktív bomláshoz (80%) kapcsolódik.[1][2] Magyarországon a geotermikus energiafelhasználás 1992-es adat szerint 80-90 ezer tonna kőolaj energiájával volt egyenértékű. A geotermikus energia korlátlan és folytonos energia nyereséget jelent. Termálvíz formájában nem kiapadhatatlan forrás. Kitermelése viszonylag olcsó, a levegőt nem szennyezi.

A geotermikus energia egy megújuló energiaforrás, ami a legolcsóbb energiák közé tartozik. Mára Spanyolország a legnagyobb zöldenergia felhasználó. Magyarországon sok geotermikus energiát használnak fel, sok híres termálfürdő van. A geotermikus fűtés kb. 5 év alatt térül meg. Magyarországon a termálvíz 2 km-nél 120 fok is lehet.

Története[szerkesztés | forrásszöveg szerkesztése]

A "geotermikus" kifejezés görög eredetű, jelentése: földi meleg belső hőség( a szó szerinti jelentése ). A hőforrásokat fürdésre már a paleolit korban is használták,[3] míg a legrégebbi ismert fürdő i. e. 3. században épült Kínában. Később a rómaiak is alkalmazták a geotermikus energiát, mind fűtésre, mind gyógyászati és pihenési célokra. Egykoron a brit római fürdővárosok a hévízforrásokat csőhálózat segítségével közvetlenül hasznosították. A rómaiak a hévizet a szem és bőrbetegségek kezelésére, míg Pompejiben az épületek fűtésére használták. Új-Zélandon az első polinéziai betelepülők akik az európai hatástól zavartalanul éltek ezer éven keresztül a 18. századig, a geotermikus hőforrások gőzét a főzésben, a termálvizet pedig a fürdésben, mosásban és a gyógyításban hasznosították. A hévizek fűtésben és gyógyászatban való alkalmazása a modern világban ismét aktuálissá vált.

A 19. században a technika fejlődésével lehetővé vált a felszín alatt rejlő termikus erőforrások felfedezése és feltárása. Toscanában a természetes geotermikus energiát a bór és az ammónium vegyületek feldolgozására használták. Itt a geotermikus folyadékok voltak a legfontosabb bórforrások, míg a hőenergia mellékes volt.

Az elektromos energia termelése 1904-ben indult meg Piero Ginori Conti herceg munkássága által és 1913-ban a larderelloi erőműben 250 kW energiát állítottak elő. A larderellói erőmű komplex jelenlegi teljesítménye meghaladja a 400 MW-ot és ezt egy fejlesztési program segítségével 880 MW-ra szeretnék növelni.

Másodjára Új-Zélandon, a Wairakei térséget fejlesztették az 1950-es évek elején, az észak-kaliforniai "Gejzír-mező" után, ahol 1960-ban indult meg a termelés. A világon ez utóbbi térséget fejlesztik a leginkább napjainkban, hiszen teljesítménye 2800 MW.

Franciaországban 1960 óta több mint 200 000 lakás fűtését oldják meg termálvíz segítségével. Olaszország és Izland a vulkanikusan legaktívabb két európai ország, a Közép-Atlantikum vulkáni hátságán fekszenek, ennek ellenére a legfőbb, geotermikus energiát hasznosító nemzetek a Csendes-óceáni lemezszegély mentén csoportosulnak. Japán, a Fülöp-szigetek és Mexikó a jelenlegi technológia fejlesztésén dolgoznak.

Időközben tervek készültek a geotermikus hő közvetlen felhasználásának lehetőségére, a távfűtésben és a mezőgazdaságban. E téren Japán, Kína, a volt Szovjetunió utódállamai, Magyarország valamint Izland a fontosabb termelők. Az új technológiákat Franciaországban és más nyugat-európai országokban dolgozták ki. A geotermikus energia olcsó, megbízható, fenntartható és környezetbarát,[4] ám az emberi történelem nagy részében csupán a tektonikus törésvonalak közelében volt elérhető. A technológiai fejlődésnek köszönhetően azonban mára a geotermikus energia felhasználásának lehetőségei jelentős mértékben megnőttek, különösen olyan alkalmazások esetében mint a lakások fűtése.

Napjainkban a geotermikus energiát számos területen alkalmazzák:

  • A mezőgazdaságban az üvegházak fűtése
  • Lakások, lakótelepek fűtése
  • Villamosenergia termelés

A geotermikus energia kitermelése[szerkesztés | forrásszöveg szerkesztése]

Kaliforniai geotermikus üzem

A termálkútból feltörő vizet gáztalanítják, ülepítik és sótartalmát részben eltávolítják, majd a felhasználás helyére szivattyúzzák, a lehűlt vizet pedig valamilyen vízáramba, vízgyűjtőbe vezetik. Amennyiben nincs vízutánpótlás – a rétegenergia csökkenése következtében idővel kevesebb vizet adnak.

A csökkenő víznyomást kompresszorral, búvárszivattyúval lehet növelni, de nem gazdaságos ez az eljárás. A legjobb megoldást a kitermelt és már lehűlt víz visszasajtolása jelenti, mely mérsékli a mély rétegekben található vízszint csökkenését.

terület vulkánok száma teljesítmény
MWe
USA 133 23 000
Japán 100 20 000
Indonézia 126 16 000
Fülöp-szigetek 53 6 000
Mexikó 35 6 000
Izland 33 5 800
Új-zéland 19 3 650
Olaszország (Toszkána) 3 700
(forrás: V. Steffansson: World geothermal assessment. World Geothermal Congress, Antalya 2005 (pdf, online))

A geotermikus energiát elektromos áram termelésére is hasznosítják, mely 2010-ben 10 715 MW kapacitást jelentett 24 országban, ami 67 246 GWh áramtermelést ért el.[5] Ez 2005-höz képest 20%-os bővülésnek felel meg a geotermikus áramtermelés terén. A geotermikus erőművek hagyományosan a lemezek törésvonalainál épültek, ám a bináris ciklus elvén működő erőművek és a javított geotermikus erőművek megjelenése erőteljesen kiszélesítette a lehetséges helyszínek körét.[6] Ennek ellenére a geotermikus energia felhasználásának továbbra is a közvetlen alkalmazás a leghatékonyabb módja, mely általában a fűtéshez szükséges energiát fedezi. A leglátványosabb eredményeket e téren Izland képes felmutatni, mely lakásainak 93 %-át fűti ily módon, évi 100 millió dollárt megtakarítva a folyamat során. Reykjavík, valaha a Föld legszennyezettebb városa mára az egyik legtisztábbnak számít, hála a geotermikus energiának.[7]

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

  1. How Geothermal energy works
  2. Turcotte, D. L. (2002), "4", Geodynamics (2 ed.), Cambridge, England, UK: Cambridge University Press, pp. 136–137, ISBN 978-0-521-66624-4
  3. Cataldi, Raffaele (August 1993), "Review of historiographic aspects of geothermal energy in the Mediterranean and Mesoamerican areas prior to the Modern Age", Geo-Heat Centre Quarterly Bulletin (Klamath Falls, Oregon: Oregon Institute of Technology) 18 (1): 13–16, <http://geoheat.oit.edu/pdf/bulletin/bi046.pdf>. Retrieved on 2009-11-01
  4. William E. Glassley. Geothermal Energy: Renewable Energy and the Environment CRC Press, 2010.
  5. GEA 2010, p. 4
  6. Tester, Jefferson W., The Future of Geothermal Energy, vol. Impact of Enhanced Geothermal Systems (Egs) on the United States in the 21st Century: An Assessment, Idaho Falls: Idaho National Laboratory, pp. 1–8 to 1–33 (Executive Summary), ISBN 0-615-13438-6, <http://geothermal.inel.gov/publications/future_of_geothermal_energy.pdf>. Retrieved on 2007-02-07
  7. Pahl, Greg. The Citizen-Powerd Energy Handbook: Community Solutions to a Global Crisis. Vermont: Chelsea Green Publishing (2007) 

Források[szerkesztés | forrásszöveg szerkesztése]

További információk[szerkesztés | forrásszöveg szerkesztése]

Kapcsolódó szócikkek[szerkesztés | forrásszöveg szerkesztése]