Fekete lyuk

A Wikipédiából, a szabad enciklopédiából
Egy fekete lyuk körüli forró plazmából álló akkréciós korong művészi ábrázolása. A kép közepén levő sötét gömb a fekete lyuk eseményhorizontja, ekörül kering az akkréciós korong. Az eseményhorizont pólusából kiinduló fényes nyúlványok mágneses erővonalak. (NASA)
Fekete lyuk gravitációs lencsehatása szimulált animáción
Az NGC 7052 elliptikus galaxis középpontjában lévő, 300 millió naptömegű, szupermasszív fekete lyuk és a körülötte lévő akkréciós korong a HST felvételén

A fekete lyuk olyan égitest, amelynél a felszínre vonatkoztatott szökési sebesség eléri vagy meghaladja a fénysebesség értékét.[1] Létezésüket az általános relativitáselmélet támasztja alá. Fekete lyuk keletkezik akkor, ha egy véges tömeg a gravitációs összeomlásnak nevezett folyamat során egy kritikus értéknél kisebb térfogatba tömörül össze. Ekkor az anyag összehúzódását okozó gravitációs erő minden más anyagi erőnél nagyobb lesz, s az anyag egyetlen pontba húzódik össze. Ebben a pontban bizonyos fizikai mennyiségek (sűrűség, téridőgörbület) végtelenné válnak (lásd: gravitációs szingularitás). A szingularitást körülvevő térrészben a gravitáció olyan erős, hogy onnan sem anyag, sem fény nem szabadulhat ki. E gömb alakú térrész határfelülete az eseményhorizont, sugara az ún. Schwarzschild-sugár. Az eseményhorizonton belülre kerülő anyag vagy sugárzás belezuhan a szingularitásba.

A fekete lyukak létezése mind elméletileg, mind csillagászati megfigyelésekkel jól alátámasztott (például Chandra űrtávcső). A lyuk elnevezés alatt nem a szokásos értelemben vett lyukat kell érteni, inkább a világűr egy részét, ami mindent elnyel, és ahonnan semmi nem tud visszatérni.

Másképpen, a fekete lyuk olyan égitest, mely – hatalmas sűrűségénél fogva – nagy tömege ellenére elég kicsi, hogy elférjen az általa létrehozott eseményhorizonton belül. Ebben az esetben ugyanis az égitest minden pontja az eseményhorizonton belül van, tehát az eseményhorizonton kívülről nem látható.

A fekete lyuk sokak szerint új univerzumok vagy dimenziók szülőhelye, az elméletileg lehetséges időutazás, vagy a fénynél gyorsabb utazás eszköze lehet. Mások szerint végtelen energiaforrás, ami mindenhol a galaxisban rendelkezésre áll.

Története[szerkesztés | forrásszöveg szerkesztése]

John Michell (1724–1793) Newton gravitációs elméletét alkalmazva rámutatott 1783-ban,[2] hogy egy elegendően nagy tömegű és kis méretű csillagnak olyan erős lenne a gravitációs tere, hogy a felszínéről semmi sem tudna elszakadni. A fény korpuszkuláris elméletét és Newton gravitációs elméletét felhasználva kiszámította, hogy a Nap sűrűségét feltételezve ennek a csillagnak a sugara 486-szorosa lenne a Napénak, a tömege pedig annak 120 milliószorosa. Ez volt az első említése egy olyan típusú csillagnak, aminek jóval később a „fekete lyuk” nevet adták.[3]

1796-ban Laplace tőle függetlenül ugyanerre jött rá.

Karl Schwarzschild német csillagász 1916-ban, miközben a német hadseregben az első világháborúban az orosz fronton harcolt, megoldotta az Einstein általános relativitáselméletére vonatkozó egyenletet (lásd. Schwarzschild-metrika). Schwarzschild már 1900-ban (amikor 27 éves volt) benyújtott a német csillagászati társaság felé egy tanulmányt, amiben azt fejtegette, hogy a tér nem közönséges háromdimenziós dobozként viselkedik, hanem a gravitáció által furcsa módon „görbül”. Einstein hasonló megfogalmazást használt 1905-ben. Schwarzschild azt állapította meg tisztán matematikai úton, hogy ha egy csillag a saját gravitációja által egyre összébb húzódik, akkor a szökési sebesség egyre nagyobb lesz, míg eléri a fény sebességét, vagyis az ilyen objektum közeléből a fény sem tud távozni. Az „eseményhorizont” fogalmát is Schwarzschild írta le, 1916-ban. Ő maga nem hitt benne, hogy mindez fizikailag is létezhet.

Ötven évvel később a csillagászok kezdték komolyabban venni Schwarzschild elképzelését a „láthatatlan csillag”-ról.

A fekete lyuk („black hole”) kifejezést John Archibald Wheeler tette ismertté egy 1967-es New York-i konferencián, bár ő maga mindig hangsúlyozta, hogy azt valaki más javasolta neki.

1971-ben Wheeler csoportjának számításai azt valószínűsítették, hogy a Cygnus X-1 röntgencsillag egy fekete lyuk körül kering.[4] (valójában maga a Cygnus X-1 egy fekete lyuk).

A fekete lyukak fizikai tulajdonságai[szerkesztés | forrásszöveg szerkesztése]

A fekete lyuk körül akkréciós korongot képez a körülötte keringő fősorozati csillagból belé áramló anyag (az akkréciós korong nem ér el az eseményhorizontig, a legbelső stabil körpálya (ISCO) elérése után belezuhan a lyukba). Az akkréciós korongra merőlegesen, annak két oldalán poláris jetek alakulnak ki.

Mivel a beléjük zuhanó anyag gyakorlatilag elveszíti szerkezetét, a fekete lyukaknak mindössze három, egymástól független tulajdonságuk van: tömegük, forgási sebességük és (elméletileg előrejelzett, a természetben elő nem forduló) elektromos töltésük.

A fekete lyukak tömege[szerkesztés | forrásszöveg szerkesztése]

Egyes, kísérletileg még nem bizonyított elméletek szerint bizonyos magfizikai folyamatok során mikroszkopikus fekete lyukak keletkezhetnek.

Nagy tömegű csillagok egyik lehetséges végállapotaként, szupernóva-robbanás után a csillagmaradvány tömegétől függően fekete lyuk vagy neutroncsillag keletkezhet. A fekete lyuk keletkezéséhez elég nagy tömegű csillag szükséges, hogy még a belőle keletkezett neutroncsillag is összeroppanjon. Ez a tömeg jelenlegi ismereteink szerint valahol 1,7-2,7 naptömeg között van, a legkisebb ismert tömegű fekete lyuk 3,8 (±0,5) naptömegű.[5] Ha viszont a csillag tömege túl nagy (20-40 naptömeg feletti), akkor még a szupernóva-robbanás előtt a csillagszéllel annyi anyagot veszít, hogy a maradék tömege nem elég a fekete lyuk létrejöttéhez, így nagyon gyorsan forgó és nagyon erős mágneses térrel rendelkező neutroncsillagok, magnetárok jönnek létre.

Több kisebb fekete lyuk ütközésével jöhetnek létre a sokáig keresett köztes tömegű fekete lyukak, ezek tömege néhány száz-néhány ezer naptömeg. Egyelőre nagyon kevés ilyen fekete lyukat ismerünk, az NGC 4472 galaxis egyik gömbhalmazában (valószínűleg a közepén) van ilyen fekete lyuk.[6] Az NGC 5408 galaxisban lévő egyik ultrafényes röntgenforrás (ULX, Ultra Luminous X-ray source) tömegét egy új módszerrel megmérve 2000 naptömegnyinek adódott[7], így ez is ebbe a ritka csoportjába tartozik a fekete lyukaknak. Az ultrafényes röntgenforrásokat általában a kutatók a köztes tömegű fekete lyukakkal hozzák összefüggésbe.

Egyes galaxisok középpontja (a miénk is) tartalmaz nagyon nagy tömegű (több millió naptömegű) szupermasszív fekete lyukat.

A fekete lyukak tömegének mérése[szerkesztés | forrásszöveg szerkesztése]

A fekete lyukak tömegét akkor tudjuk pontosan meghatározni, ha a körülötte keringő csillagközi anyagfelhők, csillaghalmazok vagy csillagok mozgása, azaz pályamérete és sebessége is megmérhető.

A fekete lyukak forgása[szerkesztés | forrásszöveg szerkesztése]

A fekete lyukak forgási sebességéről nagyon keveset tudunk, egyelőre csak néhány égitestről rendelkezünk adatokkal. A forgás sebességét a*-gal jelöljük, ennek értéke 0, ha a fekete lyuk nem forog, 1 pedig akkor, ha az égitest az általános relativitáselmélet által megengedett legnagyobb sebességgel forog. Az eddig megmért forgási sebességű fekete lyukak esetében a* mindig 0,95 fölötti értéknek adódott, például a GRS 1915+105 jelű objektumnál a* 0,98, ez másodpercenként több mint 950 fordulatot jelent.[8]

A fekete lyukak forgási sebességének mérése[szerkesztés | forrásszöveg szerkesztése]

A megfigyelhető fekete lyukakba az akkréciós korongon keresztül folyamatosan anyag áramlik (ennek sugárzása árulja el számunkra a fekete lyuk létét). Az izzó gáz egyre közelebb kerül az égitesthez, majd belezuhan. A zuhanás előtti, legbelső stabil körpálya (ISCO, Innermost Stable Circular Orbit), melyen az anyag keringhet, összefüggésben van a lyuk forgási sebességével, mert a fekete lyuk forgása közben magával rántja a téridő-kontinuum egy darabját is (ez az egyetlen olyan fizikai hatás a külvilágra, mely a forgással van kapcsolatban). A legbelső stabil körpálya sugarának méréséből következtethetünk a fekete lyuk forgási sebességére, minél gyorsabban forog a lyuk, annál kisebb ez a sugár (lyukkal forgó téridő mintegy magával rántja a befelé áramló anyagot, emiatt az gyorsabban keringve a fekete lyukhoz sokkal közelebb juthat anélkül, hogy belezuhanna).

A legbelső stabil körpálya sugarát a benne áramló anyag hőmérsékletének (erre az általa kibocsátott röntgensugárzás színképének elemzésével következtetnek), vagy a benne lévő anyag egyes jellegzetes színképvonalai eltolódásának (melyet a gravitációs vöröseltolódás okoz) mérésével végzik.

A fekete lyukak párolgása[szerkesztés | forrásszöveg szerkesztése]

A Cygnus X-1, egy kettőscsillag egyik komponense az egyik elsőnek azonosított fekete lyuk (és egyben fényes röntgenforrás) és a körülötte lévő akkréciós korong, fantáziarajzon

Stephen Hawking kimutatta 1974-ben, hogy a fekete lyuk környezetében a lyuk tömegének rovására részecskék keletkezhetnek (az energia átalakul anyaggá), ezáltal a lyuk tömege csökkenhet. Ez az anyagkeletkezés annál intenzívebb, minél kisebb a lyuk tömege. A tudósról Hawking-sugárzásnak elnevezett jelenség révén, ahogy a lyuk egyre kisebbé válik, úgy lesz az anyagkibocsátás egyre erősebb, míg végül a lyuk robbanásszerű hevességgel eltűnik. A fekete lyukba belekerülő anyag és sugárzás viszont a lyuk tömegét növeli. Ez ellensúlyozza az anyagkibocsátást, egészen addig, amíg a világegyetem hőmérséklete (2,7 kelvines kozmikus mikrohullámú háttérsugárzás) a fekete lyuk felszíni hőmérséklete felett van (minél nagyobb tömegű a fekete lyuk, annál alacsonyabb, de – a viszonylag kis méreteket leszámítva – jóval 2,7 kelvin alatt, közel 0-hoz). Ez esetben viszonylag kis méret alatt azt kell érteni, hogy jelenleg holdunk tömegének megfelelő Schwarzschild-sugárral rendelkező fekete lyuk (azaz Holdunk tömegével megegyező tömegű fekete lyuk) van termikus egyensúlyban, ez az a méret, ahol ugyanannyi sugárzást bocsát ki a fekete lyuk, mint amennyit a háttérsugárzásból elnyelni képes (felszíni hőmérséklete éppen 2,7 kelvin). Ennél kisebb tömeg esetén a fekete lyuk (amennyiben csillagközi gáz, por, csillagfény vagy egyéb „pluszban nem táplálja”) tömege a párolgás miatt csökkenni fog, nagyobb tömeg esetén pedig akkor is tovább fog nőni, ha csak a háttérsugárzás táplálja (ha a tömeg úgymond csak egy kicsivel nagyobb a kérdéses határnál, akkor a tömegnövekedés ideje is kicsi lesz, mivel a háttérsugárzás hőmérséklete gyorsabban csökken, mint ahogy a csupán háttérsugárzás által táplált lyuk felszíni hőmérséklete csökkenni tud a tömegnövekedés hatására). A világegyetem tágulása miatt a világegyetem hőmérséklete folyamatosan csökken, nullához konvergál (örökké táguló világegyetem esetén), ami pedig azt jelenti, hogy egy idő után bármely fekete lyuk felszíni hőmérsékleténél alacsonyabb lesz, azaz egy idő után minden fekete lyuk tömege csökkenni kezd, végül teljesen elpárolog (örökké táguló világegyetem esetén (azért itt is előfordulhat elfajuló eset, például hiperbolikusan gyorsuló tágulás esetén a világegyetem mérete véges időn belül végtelen nagyra nőhet és nem biztos, hogy a fekete lyuknak lesz ideje elpárologni mielőtt a világegyetem „szétspriccel a végtelenbe…”; ha ez megtörténik, többé nincs értelme térről és időről beszélni ahogy a kérdéses fekete lyukról sem), zárt világegyetem esetében a helyzet a tágulás, majd az ezt követő összehúzódás paramétereitől, illetve a fekete lyuk tömegétől függ).

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

  1. Összehasonlításképpen: a Földön a szökési sebesség (az úgynevezett második kozmikus sebesség) mindössze 11,19 km/s, és a jóval nagyobb tömegű Nap vonzását is le lehet győzni 617 km/s sebességgel. S mivel a fénynél semmi sem haladhat gyorsabban, a fekete lyuk gravitációs teréből semmi sem távozhat el (ez nem pontosan igaz, ld. Hawking elméletét), még a fény sem, innen származik a fekete lyuk elnevezés.
  2. Stephen Hawking: Einstein álma, Vince Kiadó, Budapest, 1999 ISBN 963 9192 26 0
  3. Matts Roos: An introduction to cosmology, Wiley, 2003, 3rd ed., p5., ISBN 0-470-84909-6
  4. Kendall Haven: 100 Greatest Science Discoveries of All Time (Unlimited Libraries, 2007)
  5. A jelenleg ismert legkisebb fekete lyukHírek.csillagászat.hu; Kovács József, 2008. április 3.
  6. "Középsúlyú" fekete lyukak Szerző: Molnár Péter
  7. Közepes tömegű fekete lyukat találtak egy galaxisban Szerző: Kovács József, hírek.csillagászat.hu
  8. Bepörgött fekete lyukHírek.csillagászat.hu; Szerző: Molnár Péter

Források[szerkesztés | forrásszöveg szerkesztése]

További információk[szerkesztés | forrásszöveg szerkesztése]

Commons
A Wikimédia Commons tartalmaz Fekete lyuk témájú médiaállományokat.
Wiktionary-logo-hu.png
Keress rá a fekete lyuk címszóra a Wikiszótárban!

Irodalom[szerkesztés | forrásszöveg szerkesztése]

  • Asimov, Isaac: Black Holes, Pulsars, and Quasars. New York: Gareth Stevens, 2003
  • Davis, Amanda: Black Holes. Minneapolis, MN: Powerkids Press, 2003
  • Jefferies, David: Black Holes. New York: Crabtree Publishing, 2006
  • Nardo, Don: Black Holes. New York: Thomson Gale, 2003
  • Rau, Dana: Black Holes. Mankato, MN: Capstone Press, 2005
  • Sipiera, Paul: Black Holes. New York: Scholastic Library, 1997

Weboldalak[szerkesztés | forrásszöveg szerkesztése]