Európé (hold)

A Wikipédiából, a szabad enciklopédiából
(Europé (hold) szócikkből átirányítva)
Európé
A Galilei-űrszonda felvétele.

Európé (hold)
Felfedezése
Felfedező: G. Galilei és S. Marius
Felfedezés ideje: 1610. január 7.
Pályaadatok
Periapszis: 664 300 (0,00444 CSE)
Apoapszis: 677 900 km (0,00453 CSE)
Pálya kerülete: 4 216 100 km (0,028 CSE)
Pálya sugara: 670 900 km
Pálya excentricitása: 0,0101
Keringési periódus: 3,5511810 nap (0,0097423 év)
Min. pályamenti sebesség: 13,601 km/s
Átl. pályamenti sebesség: 13,740 km/s
Max. pályamenti sebesség: 13,879 km/s
Inklináció: 1,78° (az ekliptikához)
0,464° (a Jupiter egyenlítőjéhez)
Fizikai tulajdonságok
Átlagos átmérő: 3 121,6 km
(0,245 Földnyi)
Felszín területe: 3,6·107 km2
(0,060 Földnyi)
Térfogat: 1,593·1010 km3
(0,015 Földnyi)
Tömeg: 4,80·1022 kg
(0,008 Földnyi)
Átlagos sűrűség: 3,014 g/cm3
Felszíni gravitáció: 1,314 m/s2 (0,134 g)
Szökési sebesség: 2,025 km/s
Forgási periódus: megegyezik a keringési periódussal
Tengelyferdeség:
Albedó: 0,64
Felszíni hőm.: 50/103/125 K
Atmoszféra
Légköri nyomás: 1 µPa
Összetevők: Oxigén 100%

Az Európé a Jupiter negyedik legnagyobb holdja. 1610-ben fedezte fel Galileo Galilei. Névadója Európé föníciai hercegnő.[1]

A hold nagyobb a Plútónál és az Erisznél is, kinézete a Merkúréra hasonlít: kőhold, kevés kráterrel, felszíne kásás jég, alatta (feltételezhetőleg) víz. Átlagos távolsága a Jupitertől 670 900 km.

Bár az Európé felszíni hőmérséklete legfeljebb a −160 °C-ot éri el, feltételezhető, hogy a jégkéreg alatt egy, akár 90 km mély vízóceán található.

Felfedezése[szerkesztés | forrásszöveg szerkesztése]

Az Európé felfedezését az olasz tudósnak, Galileo Galileinek tulajdonítják, aki 1610-ben egyszerű távcsövét a Jupiterre irányította. A négy nagy jupiterholdat – az Iót, Európét, Ganimédeszt ill. Kallisztót – Galileo-holdaknak is nevezik. E holdak olyan fényesek, hogy már egy binokulárral vagy kisebb távcsővel is megfigyelhetők.

A német Simon Marius az 1614-ben megjelent Mundus Jovialis című könyvében a felfedezést magának tulajdonította, állítva, hogy ő már néhány nappal Galilei előtt felfedezte a holdakat. Galilei ezt kétségbe vonta és Marius munkáját egyszerűen plágiumnak titulálta. A mai tudásunk alapján azonban nem kizárható, hogy a holdakat Marius Galileitől függetlenül felfedezte; a holdak elnevezése mindenesetre tőle származik.

A holdat a görög mitológiai alak, Zeusz egyik szeretője után nevezték el. Bár Simon Marius már röviddel a felfedezés után az Europa nevet javasolta, ez sokáig nem volt használatos és csak a 20. század közepén terjedt el. Korábban a Galilei-holdakat római számokkal jelölték, így az Európé a Jupiter II nevet viselte.

Keringési pálya[szerkesztés | forrásszöveg szerkesztése]

Az Európé 3 nap 13 óra és 14,6 perc alatt kerüli meg a Jupitert, tőle 670 900 km közepes távolságra. A keringési pálya excentricitása 0,0101, azaz a Jupiter-közeli és Jupiter-távoli pont (periapszis és apoapszis) csak 1,01%-kal tér el a fél nagytengelytől. A hold pályasíkja csak 0,464°-os szöget zár be a Jupiter egyenlítői síkjával; keringési ideje pedig a hozzá képest külső és belső szomszéd holdakkal 1 : 2, ill. 2 : 1 pályarezonanciában áll, azaz míg az Európé két keringést végez, addig az Io négyszer, a Ganimédesz egyszer kerüli meg a Jupitert.

Szerkezet és fizikai adatok[szerkesztés | forrásszöveg szerkesztése]

Az Európé belső felépítése

Az Európé közepes átmérője 3121,6 km, míg átlagos sűrűsége 3,014 g/cm³. A hold felépítése hasonlít a Föld-jellegű bolygókéhoz, mivel jórészt szilikátalapú kőzetekből áll. A külső héja vízjégből (10–15 km), illetve folyékony vízből (90 km) áll; míg a hold kisméretű magja vasból tevődik össze. Az Európé felszínének albedója 0,64, így az egyik legvilágosabb a Naprendszer ismert holdjai közül. Ez azt jelenti, hogy a beeső napfény 64%-át visszaveri a felszín. E felszín – bár nem különösebben mély barázdákkal van tagolva – meglepően sík. Csak kevés olyan felszíni struktúrát találtak, mely magasabb néhány száz méternél.

Az Európén csak kevés becsapódási kráter található, melyek közül csak háromnak nagyobb az átmérője 5 km-nél.

A Pwyll kráter

A legnagyobb kráter, a Pwyll, 26 km átmérőjű és egyben az Európé egyik legfiatalabb geológiai struktúrája. A becsapódás során a mélyből több ezer kilométerre világos anyag dobódott ki. Az üstökösök és aszteroidák becsapódási gyakoriságának becslése legfeljebb 30 millió évben határozza meg a felszín korát. A sima felszín és annak struktúrái erősen emlékeztetnek a Föld sarkköri régióinak jégmezeire. Feltételezik, hogy a hold jégből álló kérge alatt folyékony vízóceán található, melyet az árapályerők melegítenek. Az Európé felszínének hőmérséklete az egyenlítőn csak 110 K (kb. −160 °C), míg a sarkokon 50 K (kb. −220 °C). Ilyen körülmények között a vízjég betonkeménységű. A legnagyobb látható kráterek vízjéggel töltődtek fel, és ezzel „elsimították” a felszínt. Ebből a folyamatból, valamint az árapályerők által előidézett hőtermelésből arra lehet következtetni, hogy a hold jégkérge 10–15 km vastag, míg az alatta fekvő óceán akár 90 km mély is lehet.

Az Európé legfeltűnőbb jellegzetességei a teljes felszínt beborító, keresztül-kasul futó árkok és barázdák vagy más néven lineák. Ezek erőteljesen hasonlítanak a földi jégmezők repedéseire és vetődéseire. A nagyobbak megközelítőleg 20 km szélesek, külső vonalaik elmosódottak, a belső részeik pedig fehér anyagból állnak.[2] A kriovulkanizmus vagy a meleg vízből álló – eddig még nem bizonyított – gejzírek kitörése is létrehozhatja a lineákat, mely folyamat során a jégkéreg széttolódik.[3] Részletes felvételek azt mutatják, hogy a jégkéreg részei egymáshoz képest eltolódtak, ill. összetöredeztek, melynek következtében kialakult a jégmezők jelenlegi mintája. A hold héjának mozgását az árapályerők okozzák, melyek a felszínt akár 30 méterrel megemelik vagy lesüllyesztik. Az Európé a Jupiter többi holdjához hasonlóan kötött keringésű, így mindig ugyanazt a felét mutatja a bolygó felé. Ennek következtében a jégmezőknek egy bizonyos, előre meghatározható mintát kellene felvenniük, azonban a részletes felvételeken csak a geológiailag legfiatalabb területek mutatják e mintázatot. Ez azzal magyarázható, hogy az Európé felszíne valamivel gyorsabban mozog, mint a belső köpeny és a mag. A jégkéreg a hold belsejével a közöttük fekvő óceán miatt mechanikailag nem érintkezik, mozgását így a Jupiter gravitációs ereje is befolyásolja.[4] A Galileo és a Voyager szondák fényképeinek összehasonlítása azt mutatta, hogy az Európé jégkérge megközelítőleg 12 000 év alatt végez egy teljes fordulatot.[5]

A Conomara Chaos terület

A felszíni struktúrák egy másik típusa a kör ill. ellipszis alakú képződmények, más néven lenticulák (a latin folt szóból). Ezek egy része kiemelkedés (dóm), másik része pedig mélyedés vagy sötét folt. A foltokat feltehetően a felszálló melegebb jég hozza létre, hasonlóan a Föld kérgének magmakamráihoz.[6] A dómok a folyamat során felemelkednek, míg a sötét, sík foltok feltehetően megfagyott vízjégből állnak. A kaotikus területek, mint például a Conomara Chaos, egy kirakós játékhoz hasonlóan széttöredezett darabokból formálódtak, melyeket sima jég vesz körül. Kinézetük egy megfagyott tóban úszó jéghegyre hasonlít.[7]

Egy másik elmélet szerint a lenticulák kis méretű kaotikus területek, a mélyedések és dómok pedig csak a Galileo szonda korlátozott felbontású fényképeinek félreértelmezése. Ez az elmélet feltételezi, hogy a jégréteg túl vékony ahhoz, hogy ilyen felszíni képződményeket elbírjon.[8] [9]

A Hubble űrtávcső segítségével 2013-ban első ízben vízpára kilökődését figyelték meg a hold déli pólusa közelében. A kilökődés csak a Jupitertől való nagyobb távolság időszakában figyelhető meg, ami arra utal, hogy az árapályerők hatására nyílások képződnek, illetve záródnak be a hold felszínén.

Az Európé a második olyan hold, aminek felszínén vízpárát figyeltek meg, az első az Enceladus volt, a Szaturnusz egyik holdja, amit 2005-ben a NASA Cassini–Huygens űrszondája vizsgált.[10]

Conamara Chaos[szerkesztés | forrásszöveg szerkesztése]

Színerősített kép a Conamara Chaos egy részéről, arról a területről, ahol két nagy törésvonal keresztezi egymást. A fehér területek a 26 km átmérőjű Pwyll kráter kidobott törmelékei. Ez a kráter mintegy 1000 kilométernyire délre található ettől a vidéktől.

A Conamara Chaos vidéke a földi Conamara területről kapta a nevét, amely Írországban található. Conamara Chaost az Európé szétszakadó, majd újrahegedő jégkérge alakítja ki. Olyan jégtáblák alkotják, amelyek föltöredeztek, elmozdultak, egy részük visszasüllyedt már, de néhány korábbi tábladarabot még rekonstruálni lehet a látható táblatöredékekből. Ezt a területet arra hozzák föl példának gyakran, hogy az Európé jégkérge alatt egy felszínalatti óceán húzódik.

Légkör[szerkesztés | forrásszöveg szerkesztése]

A Hubble űrtávcső felvételei egy nagyon vékony, oxigénből álló légkör létezésére utalnak, 10−11 bar nyomással. Feltételezik, hogy az oxigén a napsugárzás hatására a jégkéregből keletkezik, melynek során a vízjég oxigénre és hidrogénre bomlik. A könnyű hidrogén elszökik a világűrbe, a nehezebb oxigént azonban visszatartja a hold gravitációja. A légkör az oxigénen kívül szén-dioxidot is tartalmazhat kis mennyiségben, melyet már nehezebb kimutatni.[11]

Mágneses mező[szerkesztés | forrásszöveg szerkesztése]

A Galileo szonda holdmegközelítései során gyenge mágneses mezőt mértek, mely erőssége ¼-e a Ganimédeszének. A mező változik, miközben a hold a Jupiter összetett magnetoszféráján keresztülhalad. A Galileo adatai arra utalnak, hogy a hold felszíne alatt egy elektromos vezető folyadék található, például egy sósvízi óceán. Színképelemzési vizsgálatok azt is kimutatták, hogy a vöröses vonalak és a felszíni struktúrák sókban, például a magnéziumoxidban gazdagok. Mivel a kimutatott sók rendszerint színtelenek, így a vöröses színezetet más elemek, például a vas illetve a kén is okozhatják. A mágneses mező másik felét a Jupiter hatalmas tömegvonzása okozza, úgy minta Ganymedesnél.

Élet az Európén[szerkesztés | forrásszöveg szerkesztése]

A folyékony víz feltételezhető létezése spekulációkat indított el arról, hogy az Európé óceánjaiban létezhet-e élet. A Földön ugyanis olyan életformákat is felfedeztek, melyek szélsőséges körülmények között, napfény hiányában léteznek, a tengerfenék meleg vizű forrásaiban vagy az antarktiszi Vosztok-tóban.[12][13] Bizonyítékok erre az elméletre még nincsenek, így ezt a későbbi űrszondáknak kell tisztázniuk. A tervek szerint egy önálló kriobot a felszíni leszállás után átolvasztaná magát a jégkérgen és a hold óceánjába egy kisméretű robot-tengeralattjárót engedne. Mielőtt azonban ez a küldetés megvalósulhat, a következő évtizedben szükséges lenne elindítani az Jupiter Europa Orbiter (JEO) nevű szondát a Europa Jupiter System Mission keretein belül, mely az Európé körül pályára állva a holdat részletesen tanulmányozná és adataival elősegítené a későbbi küldetések leszállóhelyeinek kiválasztását.

A későbbi leszállóegység számára a felszín elemzése és háromdimenziós modelljének építése már megkezdődött, az előzetes vizsgálatok alapján a legígéretesebb leszállóhelyek a jégpáncél egymástól távolodó lemezei közötti, vízjéggel kitöltött, több kilométer széles, viszonylag sík repedések.[14]

Lásd még[szerkesztés | forrásszöveg szerkesztése]

További információk[szerkesztés | forrásszöveg szerkesztése]

Commons
A Wikimédia Commons tartalmaz Európé (hold) témájú médiaállományokat.

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

  1. Irodalom Mitológia Csillagászat
  2. Geissler, Paul E.; Greenberg, Richard; et al.: Evolution of Lineaments on Europa: Clues from Galileo Multispectral Imaging Observations, 1998. (Hozzáférés: 2009. szeptember 23.)
  3. Figueredo, Patricio H.; and Greeley, Ronald: Resurfacing history of Europa from pole-to-pole geological mapping, 2003. (Hozzáférés: 2009. szeptember 23.)
  4. Hurford, Terry A.; Sarid, Alyssa R.; and Greenberg, Richard: Cycloidal cracks on Europa: Improved modeling and non-synchronous rotation implications, 2006. (Hozzáférés: 2009. szeptember 23.)
  5. Kattenhorn, Simon A. (2002.). „Nonsynchronous Rotation Evidence and Fracture History in the Bright Plains Region, Europa”. Icarus 157, 490–506. o. DOI:10.1006/icar.2002.6825.  
  6. Sotin, Christophe; Head III, James W.; and Tobie, Gabriel: Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting (PDF), 2001. (Hozzáférés: 2009. szeptember 23.)
  7. Goodman, Jason C.; Collins, Geoffrey C.; Marshall, John; and Pierrehumbert, Raymond T.: Hydrothermal Plume Dynamics on Europa: Implications for Chaos Formation (PDF). (Hozzáférés: 2009. szeptember 23.)
  8. O'Brien, David P.; Geissler, Paul; and Greenberg, Richard (2000. October). „Tidal Heat in Europa: Ice Thickness and the Plausibility of Melt-Through”. Bulletin of the American Astronomical Society 30, 1066. o.  
  9. Greenberg, Richard: Unmasking Europa, 2008
  10. Hubble discovers water vapour venting from Jupiter's moon Europa [heic1322] 2013-12-12
  11. Europa's Salty Surface – Hawai'i Institute of Geophysics and Planetology, Szerző: Taylor, G. Jeffrey – 1998. szeptember 24.
  12. Exotic-looking microbes turn up in ancient Antarctic ice – Science@NASA – 1998.03.18.
  13. Miles Below Antarctic Ice, a Freshwater Lake May Harbor Ancient Life – Columbia University: Earth Institute, Los Angeles Times, – 2001.03.03.
  14. Molnár, Péter: Hova érdemes leszállni a jeges jupiterhold felszínén?. Hírek.csillagászat.hu, 2009. szeptember 10. (Hozzáférés: 2009. szeptember 10.)