Racionális számok

A Wikipédiából, a szabad enciklopédiából
(Racionális szám szócikkből átirányítva)

A matematikában racionális számnak (hányados- vagy vegyes-törtszámnak) nevezzük két tetszőleges egész szám hányadosát, amelyet többnyire az a/b alakban írunk fel, ahol b nem nulla.

Egy racionális számot végtelen sok alakban felírhatunk, például . A legegyszerűbb, azaz tovább nem egyszerűsíthető alak akkor áll elő, amikor a és b relatív prím. Minden racionális számnak pontosan egy olyan tovább nem egyszerűsíthető alakja van, ahol a nevező pozitív (irreducibilis tört).

A racionális számok tizedestört alakja véges vagy végtelen szakaszos (tehát a felírásban egy ponton túl a számsorozat periodikusan ismétlődik). Ez az állítás nem csak a tízes-, hanem tetszőleges, egynél nagyobb, egész alapú számrendszerben való felírásra igaz. A tétel fordítottja is igaz: ha egy szám felírható véges vagy végtelen szakaszos tizedestört alakban, akkor az racionális szám.

Azokat a valós számokat, amelyek nem racionálisak, irracionális számoknak nevezzük.

A racionális számok halmazát tipográfiailag kiemelt Q (vagy ) betűvel jelöljük (a latin quotiens (hányszor?), illetve az angol quotient (hányados) szóból). Halmazdefinícióként felírva:

Aritmetika[szerkesztés]

 

 

Két racionális szám, és akkor és csak akkor egyenlők, ha

A racionális számoknak létezik additív és multiplikatív inverze:

 

Történetük[szerkesztés]

Egyiptomi törtek[szerkesztés]

Minden pozitív racionális szám felírható véges sok különböző pozitív egész reciprokának összegeként. Például:

Sőt, minden pozitív racionális számnak végtelen sok ilyen formájú, különböző felírása lehetséges. Ezt az alakot egyiptomi törtnek is nevezzük, mivel már az ókori Egyiptomban is használták, akik egyébként a diadikus törteket is a maitól eltérő alakban írták le.

Formális definíció[szerkesztés]

A racionális számok precízen egész számok rendezett párjaként definiálhatók: ahol b nem nulla. Az összeadást és szorzást ezeken a párokon a következőképp definiáljuk:

Annak érdekében, hogy teljesüljön az elvárt tulajdonság, definiálni kell egy ekvivalenciarelációt is () a következőképpen:

Ez az ekvivalenciareláció kompatibilis a fent definiált összeadással és szorzással. Legyen ezután Q az ekvivalenciaosztályok halmaza, más szóval azonosnak tekintjük az (a, b) és a (c, d) párt, ha ekvivalensek. (Ez a konstrukció elvégezhető minden integritástartomány esetében, lásd hányadostest.)

Az így kapott számok halmazán a teljes rendezés is definiálható:

Tulajdonságok[szerkesztés]

A racionális számok halmaza () az összeadás és a szorzás műveletével testet alkot. Ez a test az egész számok () hányadosteste.

A racionális számok halmaza a legszűkebb 0 karakterisztikájú test. Minden egyéb 0 karakterisztikájú test tartalmazza a racionális számok testének egy izomorf képét.

A racionális számok algebrai lezártja (azaz a racionális együtthatós polinomok gyökeit is tartalmazó legszűkebb test) az algebrai számok halmaza.

A racionális számok halmaza megszámlálhatóan végtelen, vagyis sorozatba rendezhető. Mivel a valós számok számossága ennél nagyobb, így mondhatjuk, hogy a valós számok túlnyomó többsége irracionális.

A racionális számok halmazának Lebesgue-mértéke nulla.

A racionális számok sűrűn rendezett halmazt alkotnak: bármely két különböző racionális szám között van egy harmadik, (és így végtelen sok). A rendezett halmazok között pontosan a racionális számok halmaza (meg a vele izomorfak) azok, amelyek megszámlálhatóak, sűrűn rendezettek és nincs legkisebb vagy legnagyobb elemük (Georg Cantor tétele).

Valós számok[szerkesztés]

A racionális számok a valós számok halmazának sűrű részhalmazát alkotják, azaz minden valós számhoz tetszőlegesen közel vannak racionális számok. Ugyancsak igaz, hogy a racionális számok pontosan a véges lánctört formájában írható valós számok.

Mivel rendezett halmazt alkotnak, a racionális számokat elláthatjuk a rendezéstopológiával. Ez azonos a valós számok rendezéstopológiájának altértopológiájával, továbbá egyben metrikus tér is, a következő metrikával: .

E topologikus tér a műveletekkel topologikus testet alkot. A racionális számok topológiája nem lokálisan kompakt. Ez a tér úgy is jellemezhető, hogy az egyetlen megszámlálható metrikus tér, amiben nincsenek izolált pontok. A tér továbbá teljesen széteső. A racionális számok tere nem teljes, teljes lezártja a valós számok tere.

p-adikus számok[szerkesztés]

A fent említett, a szokásos abszolút értékből definiált metrikán kívül vannak más, nem kevésbé fontos metrikák is, amelyek -t topologikus testté szervezik:

legyen tetszőleges prímszám, definiáljuk minden nemnulla egész esetén -t, ahol legnagyobb hatványának kitevője, ami osztja -t; legyen továbbá . Tetszőleges racionális szám esetén legyen .

Ekkor metrikus teret definiál -n. Ez a tér, nem lesz teljes, teljes burka a p-adikus számok teste lesz.

Források[szerkesztés]