Vektortér

A Wikipédiából, a szabad enciklopédiából

A vektortér, más néven lineáris tér a lineáris algebra egyik legalapvetőbb fogalma, amelyhez a geometriában (is) használt vektor fogalmának általánosítása vezet. A vektorokkal végezhető műveletek legelemibb tulajdonságait axiomatikusan definiálja, ezáltal egy algebrai struktúra-típus keletkezik. A lineáris tér a mi szokásos síkunk és terünk általánosítása többdimenziós terekre. Jelentősége nem csupán elméleti, a fizikában, informatikában, a komputergrafikában, számos más elméleti és alkalmazott tudományágban; nemkülönben a matematika számos területén fontos szerepet játszik.

Formális definíció[szerkesztés]

Legyen F egy test. Egy V nemüres halmazt vektortérnek nevezünk az F test felett, ha

  • V halmazon értelmezve van egy összeadás nevű művelet, V × VV függvény, ∀ u, vV elempárhoz hozzárendel egy és csak egy V-beli elemet (u+v), valamint
  • F és V között értelmezve van egy skalárral való szorzás nevű művelet, F × VV függvény, ∀ λ ∈ F és vV elempárhoz egyértelműen hozzárendel egy V-beli elemet (λv),

úgy, hogy az alábbi azonosságok, úgynevezett vektortér-axiómák teljesülnek:

  1. V az összeadásra nézve kommutatív csoportot, Abel-csoportot alkot, azaz az összeadás:
  2. Skalárral való szorzás disztributivitási szabályai:
    • ∀ λ ∈ F és u, vV: λ(u + v) = λu + λv.
    • ∀ λ, μ ∈ F és vV: (λ + μ)v = λv + μv.
    • ∀ λ, μ ∈ F és vV: λ(μv) = (λμ)v.
    • vV: 1v = v, ahol 1 az F test egységeleme.

Formálisan tehát úgy definiálhatjuk a vektortereket, figyelembe véve, hogy egy test,
az F feletti vektortér egy algebrai struktúra, a következő formában

úgy, hogy

Abel-csoport,
skalárral való szorzás, melyre teljesülnek a fent említett disztributivitási szabályok.

Ekkor a V vektortér struktúráját a következőképpen is jelölhetjük

V elemeit vektoroknak, F elemeit skalároknak nevezzük.
Megkülönböztetünk úgynevezett speciális vektortereket is, amelyeken még egyfajta szorzás is értelmezett.
Ilyenek például a skaláris szorzattal ellátott euklideszi terek.

Elemi tulajdonságok[szerkesztés]

V Abel-csoport[szerkesztés]

  • nullvektor és az additív inverz unicitása,
  • bármely u,v,w,tV: az u+x = v, és y+w = t egyenletek egyértelműen megoldhatók V-ben x és y-ra,
  • összeadás asszociativitása és kommutativitása miatt többtagú összegek esetén a zárójelezés és a tagok sorrendje is tetszőlegesen megváltoztatható.

További következmények[szerkesztés]

  • bármely λ ∈ F: λ0 = 0,
  • bármely vV: 0v = 0, ahol 0 az F test nulleleme,
  • bármely vV: (-1)v = -v, ahol -1 az F test egységelemének additív inverze,
  • ha λv = 0, akkor λ = 0 vagy v = 0.

Példák[szerkesztés]

A lineáris tér egy nagyon általános fogalom, rengeteg példa van rá a matematikában. Nagyon sok olyan matematikai fejezetben is megjelenik, amit szerteágazóan alkalmaznak a fizika számos területén, például a funkcionálanalízis vagy éppen a differenciálgeometria, hogy csak néhányat említsünk.

  • a közönséges síkbeli és térbeli, origóból kiinduló vektorok a valós test felett a szokásos vektorösszeadásra és skalárral való szorzásra nézve,
  • a valós szám n-esek felett, a komplex szám n-esek felett, és
  • általában F n, F felett (F tetszőleges test), a szokásos módon értelmezett, komponensenként végzett műveletekre,
  • F n × k, F felett, azaz az n×k-as mátrixok F test felett, a mátrixok szokásos, komponensenkénti összeadására és skalárral való szorzására nézve.
  • F [x], azaz az F feletti polinomok, F felett, a polinomok összeadására és skalárral való szorzására nézve,
  • a legfeljebb n-edfokú polinomok F felett,
  • valós számsorozatok a valós test felett a szokásos műveletekre,
  • az intervallumon folytonos -be képező függvények a valós test felett, a szokásos pontonkénti összeadásra, és skalárral való szorzásra nézve,
  • az intervallumon Riemann-integrálható -be képező függvények a valós számok teste felett, a szokásos pontonkénti összeadásra, valamint a skalárral való szorzásra nézve,
  • a komplex számok a valós test felett, a komplex számok körében értelmezett műveletekre,
  • a komplex számok a komplex számok teste felett,
  • a valós számok a valós számok teste felett,
  • a valószínűségi változók a szokásos összeadásra és skalárral való szorzásra nézve.

Lineáris altér[szerkesztés]

Egy F test feletti V vektortér egy nemüres WV részhalmazát altérnek nevezzük V-ben, ha W maga is vektortér ugyanazon F test felett ugyanazokra a V-beli vektorműveletekre, precízebben ezeknek a műveleteknek W-re történő megszorításaira nézve. Jelölése WV.

Lineáris kombináció[szerkesztés]

V vektortér v1, v2, …, vk tetszőleges vektorai és λ1, λ2, …, λkF skalárok.
Ekkor a V vektort a vi vektorok, λi skalárokkal képzett lineáris kombinációjának nevezzük.

Lineáris függetlenség[szerkesztés]

Egy V vektortér véges sok vektoráról akkor mondjuk, hogy lineárisan függetlenek, ha lineáris kombinációjuk csak úgy lehet a nullvektor, ha mindegyik skalár szükségképpen 0. Végtelen sok vektor lineáris függetlenségén azt értjük, hogy közülük bármely véges sok lineárisan független. A v1,…,vnV vektorok lineárisan összefüggőek, ha lineárisan nem függetlenek, tehát

nem mind nulla skalár, azaz közülük legalább egy nem nulla, hogy

Bázis[szerkesztés]

A bázis a lineáris algebrában egy olyan vektorhalmazt jelent, mely vektorainak lineáris kombinációi reprezentálják egy megadott vektortér valamennyi vektorát, valamint e vektorhalmaz semelyik eleme sem fejezhető ki a többi elem lineáris kombinációjával.
Tehát bázison lineárisan független generátorrendszert értünk.

Dimenzió[szerkesztés]

Egy V vektortér dimenzióján egy bázisának elemszámát, számosságát értjük.
Ha a vektortérnek nincs véges generátorrendszere, akkor dimenziója végtelen. A 0 tér dimenziója: 0.

Vektorterek izomorfizmusa[szerkesztés]

Definíció[szerkesztés]

Két vektortér, V1 és V2 izomorf egymással, ha létezik egy kölcsönösen egyértelmű, injektív lineáris (homogén) leképezés V1-ből V2-re.
Azaz

lineáris leképezés bijektív.

A vektorterek halmazán az izomorfia meghatároz egy osztályozást. Ez az osztályozás a halmazt diszjunkt részhalmazok uniójára bontja fel. Két vektortér akkor és csak akkor kerül ugyanabba az osztályba, ha izomorf.
E reláció reflexív, szimmetrikus és tranzitív, vagyis az izomorfia ekvivalenciareláció.

Magtér, képtér[szerkesztés]

Ha tetszőleges lineáris leképezés, akkor a magtér és a képtér

Megjegyzés: a magtér a V, a képtér a W vektortér altere.

Tulajdonságok[szerkesztés]

Véges dimenziós vektorterek tulajdonságai

  • Egy lineáris leképezés akkor és csak akkor izomorfizmus, ha
  • Ha V vektortér F felett, valamint
  • Ugyanazon F test feletti véges dimenziós vektorterekre fennáll:

Dimenziótétel[szerkesztés]

A dimenziótétel azt állítja, hogy tetszőleges lineáris leképezés képterében illetve magterében lévő bármely lineáris független generátorrendszer összelemszáma a kiindulási vektortér dimenziójával egyenlő. Formálisan

V1 és V2, két tetszőleges, véges dimenziós vektortér ugyanazon F test felett, továbbá tetszőleges lineáris leképezés V1-ből V2-be. Ekkor

Faktortér[szerkesztés]

Definíció[szerkesztés]

V egy tetszőleges vektortér F felett, és U egy tetszőleges altere V-nek. A

halmazok, ahol v befutja az egész vektorteret, diszjunkt részhalmazok uniójára bontják V-t, ugyanis ha
akkor és diszjunkt, ha akkor
Definiálunk két műveletet e halmazok körében

Az ily módon definiált műveletek egyértelműek, mivel

Így egy vektorteret kaptunk, melyet a V vektortér U altere szerinti faktorterének nevezünk, vagy röviden a faktortér, szokás hányadosterének is nevezni.
A faktortér elemei a vektorhalmazok, az additív egységelem a

Homomorfizmus[szerkesztés]

Algebrai megközelítés:

Legyenek G és L a szorzásra nézve csoportok. Az f:G→L leképezést homomorfizmusnak nevezzük, ha f(a·b)=f(a)·f(b) teljesül, azaz a leképezés művelettartó.

Legyen f a G csoportnak az L csoportba képező homomorfizmusa. És jelölje Ker f:=(f(g)=1) Ker f-et a homomorfizmus magjának nevezzük.

Homomorfia tétele:

Legyen f:G→L a G csoportnak az L csoportba képező homomorfizmusa. És jelölje Ker f e homomorfizmus magját. Ekkor G/Ker f izomorf az L csoporttal.

Lásd még[szerkesztés]

Irodalom[szerkesztés]

  • Bronstejn – Szemengyajev – Musiol: Matematikai kézikönyv' (TypoTeX, 2002)
  • Dancs I. – Puskás Cs.: Vektorterek (Aula Kiadó, 2003)
  • Sain Márton: Matematikatörténeti ABC (Tankönyvkiadó, 1978)
  • Scharnitzky Viktor: Mátrixszámítás. Bolyai-könyvek sorozat (Műszaki Könyvkiadó, 1998)
  • Surányi László: Algebra, testek, gyűrűk, polinomok (TypoTeX, 2004)
  • Szász Gábor: Matematika II. (Nemzeti Tankönyvkiadó, 2000)
  • Szendrei János: Algebra és számelmélet (Nemzeti Tankönyvkiadó, 1996)

Források[szerkesztés]

  • Freud Róbert: Lineáris algebra (ELTE Eötvös Kiadó, 2004)
  • Fried Ervin: Algebra I., Elemi és lineáris algebra (Nemzeti Tankönyvkiadó, 2000)
  • Kuros, A. G.: Felsőbb algebra (Tankönyvkiadó, Bp., 1975)
  • Praszolov, V. V.: Lineáris algebra (TypoTeX, 2005)

További információk[szerkesztés]