Skaláris szorzat

A Wikipédiából, a szabad enciklopédiából
Ugrás a navigációhoz Ugrás a kereséshez

A geometriában a sík két, egymással szöget bezáró vektorának skaláris szorzata az mennyiség. Két geometriai vektor skaláris szorzatát tehát úgy kapjuk meg, hogy összeszorozzuk a hosszukat és az általuk közbezárt szög koszinuszát. A skaláris szorzás ezek szerint kétváltozós függvény, amely a vektorpárokat a valós számokra képezi. Bár a vektorok skaláris szorzása számos tekintetben hasonlít a számok szorzására, lényeges különbség az, hogy míg két szám szorzata ismét szám, két vektor skaláris szorzata nem vektor, hanem szám (skalár; innen ered az elnevezés), így szigorúan véve ez a leképezés nem is nevezhető műveletnek. A skaláris szorzatot néha belső szorzatnak is nevezik. Szokásos jelölése: , , vagy .

A skaláris szorzatnak fontos közvetlen alkalmazásai vannak a geometriában és a fizikában, igazi jelentőségét azonban az adja, hogy a skalárszorzat-fogalomnak számos általánosítása és absztrakciója van, amelyek révén alkalmazható a koordinátageometriában, a lineáris algebrában, a vektoranalízisben, a funkcionálanalízisben, az ortogonális függvénysorok elméletében, a statisztikában és a számítástechnikában is.

A széleskörű alkalmazhatóság kulcsa az a megfigyelés, hogy ha a két összeszorzandó vektor koordinátáival adott: és , akkor skaláris szorzatuk épp az

mennyiség. Ez az összefüggés lehetővé teszi, hogy a lineáris algebrában szokásos absztrakt vektorokkal kapcsolatban is beszélhessünk olyan alapvetően geometriai jellegű fogalmakról, mint a hosszúság, a hajlásszög, az irány, a merőlegesség és a párhuzamosság, valamint a vetület. Ugyanakkor a fordított irányú kapcsolat lehetővé teszi, hogy geometriai feladatokat aritmetikai, algebrai számítások elvégzésére vezessünk vissza, ami a koordinátageometria és a geometria fizikai-műszaki alkalmazásainak az alapja.

Alapvető tulajdonságai[szerkesztés]

A skalárszorzat definíciójából közvetlenül következnek az alábbi tulajdonságok.

Ha két vektor merőleges egymásra akkor hajlásszögük koszinusza 0, így skaláris szorzatuk is nulla. Megfordítva, ha két, egymással szöget bezáró (nem nulla hosszúságú) vektor skaláris szorzata nulla, akkor

és így . Követve azt a konvenciót, hogy a nullvektor minden vektorra merőleges, a fentieket úgy foglalhatjuk össze, hogy két vektor akkor és csak akkor merőleges, ha a szorzatuk nulla.

A skaláris szorzat szimmetrikus (a műveleteknél megszokott szóhasználattal: kommutatív), mivel

Egy vektor önmagával vett skaláris szorzata a vektor hosszúságának a négyzete: Ebből következően a skaláris szorzat pozitív definit: , és akkor és csak akkor ha

  • bilineáris:

Általánosítás[szerkesztés]

Általában bármely vektortér felett értelmezhetünk skalárszorzatot[forrás?] (belső szorzatot). Általános értelemben egy adott vektortér felett bármely kétváltozós leképezést belső szorzatnak nevezünk, ha a fenti tulajdonságokat teljesíti. Egy vektortér felett akár több különböző belső szorzat is definiálható. Ilyenkor inkább szokásos a jelölés.

Példák[szerkesztés]

  • Az intervallumon folytonos, -be képező függvények terén értelmezett belső szorzat:

Komplex értékű függvények esetén az integrandus -ra módosul.

  • Bármely lineáris térben értelmezhető egy adott bázishoz tartozó skalárszorzat a következőképp. Ha és vektor az bázisban felírható:

akkor az ezen bázis által meghatározott skalárszorzat:

Geometriai vonatkozások[szerkesztés]

.
az vetülete -re.

Az euklideszi geometriában szoros összefüggés áll fenn a skalárszorzat és a hosszak, valamint a szögek között. Egy vektorra a hosszának (abszolút értékének) négyzete, és ha egy másik vektor, akkor

ahol és jelöli az és vektor hosszát, pedig az általuk bezárt szög.

Mivel az vektornak -re való vetülete, a skalárszorzatot geometriailag úgy lehet értelmezni, mint -nak irányába eső komponensének és -nek a szorzatát.

Mivel nullával egyenlő, két egymásra merőleges vektor szorzata mindig nulla. Ha és vektor hossza egységnyi (vagyis egységvektorok), skalárszorzatuk egyszerűen közbezárt szögük koszinuszát adja.

Így a két vektor közötti szög:

A fenti tulajdonságokat időnként a skalárszorzat definíciójaként is használják, különösen 2 és 3 dimenziós vektorok esetében. Több dimenziós esetben a képletet a szög értelmezéseként lehet használni.

Geometriai vonatkozás bizonyítása[szerkesztés]

Vegyük tetszőleges elemét

A Pitagorasz-tétel egymást követő alkalmazásával -re (a hosszra) a következőt kapjuk

De ez ugyanaz, mint a

ebből arra a következtetésre jutunk, hogy egy vektor önmagával vett skaláris szorzata a vektor hosszának a négyzetét adja.

Lemma: .

Most vegyünk két vektort az origóban: -t és -t, melyek szöget zárnak közre. Definiáljunk egy harmadik, vektort:

ezzel alkottunk egy háromszöget , és oldalakkal. A koszinusztételt felírva:

A lemma alapján a hosszak négyzetének helyébe skaláris szorzást helyettesítve kapjuk, hogy

                  (1)

De mivel , azt is tudjuk, hogy

,

ami a disztributív tulajdonság miatt

                    (2)

A két egyenletet – (1) és (2) – egyenlővé téve

Kivonunk mindkét oldalról -t és osztunk -vel. Marad

Q.E.D.

Források[szerkesztés]

Fordítás[szerkesztés]

Ez a szócikk részben vagy egészben a Dot product című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel.

További információk[szerkesztés]

Kapcsolódó szócikkek[szerkesztés]