Színképelemzés

A Wikipédiából, a szabad enciklopédiából
Spirituszláng, előtérben a spektruma

A színképelemzés (spektrálanalízis) a megfigyelt objektumokból érkező látható fény színképének vizsgálata. A különböző hullámhosszú elnyelési sávok intenzitásából meghatározhatjuk a vizsgált anyag összetevőit.

Kialakulásának története[szerkesztés]

1802-ben William Hyde Wollaston angol orvos és természettudós Isaac Newton eredményeire alapozva a nap színképét vizsgálta. Ehhez a szűk résen átengedett napfényt üvegprizmával bontotta színekre, és megfigyelte, hogy az egymásba olvadó színeket helyenként sötét sávok szakítják meg. A színkép vörös tartományában két ilyen vonalat látott, a zöldben hármat, a kék–ibolya tartományban kettőt. Tévesen arra gondolt, hogy ezek valamiféle, a színeket elválasztó határok, és nem foglalkozott tovább a problémával. Munkássága azonban felkeltette mások, egyebek közt Fraunhofer figyelmét.

1814-ben Joseph von Fraunhofer német fizikus Wollastonénál lényegesen fejlettebb készülékével már 574 vonalat azonosított a színkép látható tartományában — azóta még több ilyen, a színképből hiányzó frekvenciáról tudunk, és ezeket hagyományosan Fraunhofer-vonalaknak nevezzük. Abban az időben ezt a tényt csak érdekesnek tartották, de nem gondolták róla, hogy fontos is lehet. Azt, hogy mitől jelennek meg ezek a vonalak, Robert Bunsen és Gustav Kirchhoff tisztázta (legalábbis nagy vonalakban).

Gustav Kirchhoff német (porosz) fizikus az 1850-es évek közepén az elektromos áramok kutatásával foglalkozott a breslaui egyetemen. 1858-ban, amikor egy alkalommal egy professzornak segédkezett, észrevette, hogy a gázok fényspektrumában fényes vonalak jelentek meg, és eszébe jutott, hogy ez hasonlít ahhoz, amit Fraunhofer cikkében olvasott. További vizsgálatokkal kiderült, hogy ezeknek a fényes vonalaknak a hullámhossza pontosan megegyezik azoknak a fekete vonalaknak a hullámhosszával, amelyeket Fraunhofer a Nap látható spektrumában tanulmányozott. Kirchhoff, miközben azon gondolkozott, mit is jelenthet, hogy valamilyen gáz lángjában és a Nap színképében azonos hullámhosszhoz tartozó vonalakat lát, rájött, hogy ha a fény spektrumát egy prizmával felbontja, a hullámhosszak különbsége jobban látható. Akkoriban ehelyett különféle színű szűrőket használtak, amiket egymás után raktak, és így a fény halványabban volt látható.

Kirchhoff arra gondolt, hogy az ő módszerével minden fényes csúcsot ki tud majd mutatni, bármely gáz állítja is azt elő. A gyakorlatban azonban nem működött a dolog, ugyanis a gázokat megvilágító láng túl fényes volt, és zavarta a megfigyelést.

Robert Bunsen német kémikus 1858-ban kezdte el tanulmányozni egyes kémiai elemek lángfestését. A róla elnevezett égő különösen forró (1480 °C-nál melegebb) lángja alig sugárzott látható fényt, ezért különösen alkalmas volt a lángfestés vizsgálatára — az elszíneződés kalibrálásához színes szűrőket használt. Kirchhoff hívta fel a figyelmét arra, hogy a spektroszkopikus módszer nagyobb felbontást és pontosabb méréseket eredményez.

Kirchhoff és Bunsen 1859-ben a Heidelbergi egyetemen kezdte el a közös munkát. Hat hónap alatt megterveztek és megépítettek egy olyan készüléket, amelyben a Bunsen égőjében elégetett gáz fényét egy keskeny résen engedték át a fénynyalábot kollimátorlencsével szűkítették, majd Kirchhoff prizmájával bontották a szivárvány színeire. A színképet a mikroszkópokéhoz hasonló okulárral vizsgálták (Prizmát és okulárt korábban Fraunhofer is használt; a „spektroszkópnak” elnevezett berendezés többi eleme új volt). Megállapították, hogy felforrósítva minden elem a rá jellemző hullámhosszakon sugároz. Így például a nátrium fényes vonalai a színkép sárga tartományában vannak (ezt már Fraunhofer is tudta, ezekkel ellenőrizte az üvegek optikai tulajdonságait), a réz vonalai a kékeszöld szakaszon stb. Elkezdték katalogizálni a kémiai elemeket és kisugárzott hullámhosszaikat. A Nap színképét vizsgálva rájöttek (főleg Kirchhoff munkájával), hogy a Fraunhofer-vonalak is a különböző elemek sajátosságai, a Nap légkörében azonban ezek az elemek — továbbra is a rájuk jellemző hullámhosszakon — nem kisugározzák, hanem éppen ellenkezőleg, elnyelik a Nap sokkal forróbb belsejéből érkező fényt. Az ismert elemeknek megfelelő Fraunhofer-vonalakból tehát meg tudták mondani, milyen elemeket tartalmaz a Nap légköre. Felfedezésüket Kirchhoff 1859. október 27-én mutatta be Berlinben a Porosz Tudományos Akadémiának. Ma ezt a napot tekintik az asztrofizika születésnapjának (bár ezt a tudományágat csak 1890 óta híják így). Ezután több csillag színképét is megvizsgálták ezzel a módszerrel.

Színképvonalaik alapján két új elemet is fölfedeztek: 1860-ban a céziumot (nevének jelentése: „égszínkék”, amit a spektrográfban látható kékes színe után kapott), 1861-ben pedig a rubídiumot (aminek nevét a latin „piros” szóból képezték).[1] Ezzel a tudással és a kémiai elemek általuk megmért katalógusával felfegyverkezve Kirchhoff és Bunsen végezte el először tengervíz teljes kémiai elemzését.

A színképelemzés és a spektroszkópia[szerkesztés]

A színképelemzés jelentősen hozzájárult az anyagról szerzett ismeretekhez. Segítségével tárták fel az atomok elektronszerkezetének sajátosságait, határozták meg az elektronállapotokat jellemző kvantumszámokat; végeredményben ez tette lehetővé a kémiai elemek periódusos rendszerének elméleti értelmezését.

A módszer elve alapján kialakult tudományos vizsgálati eljárások összességére a spektroszkópia kifejezést használjuk. Mára az elektromágneses sugárzás teljes hullámhossz, illetve frekvencia tartományán működik már spektroszkópiai módszer, és ide soroljuk a részecskesugárzások megfigyelésével foglalkozó eljárásokat is.

Felvilágosítást szerezhetünk a molekulák szerkezetéről, a molekulákon belüli atomtávolságokról, az elektronok elrendeződéséről. Számos elemet, elemek izotópjait, molekulát a színképelemzés révén fedeztek fel. Anyagok összetételének vizsgálatánál széleskörűen alkalmazzák az asztrofizikában, a technikában, a régészetben, a rendőri nyomozásban stb.

Jegyzetek[szerkesztés]

  1. Kendall Haven: 100 Greatest Science Discoveries of All Time (Unlimited Libraries, 2007)

Források[szerkesztés]

  • Clark, Donald: Encyclopedia of Great Inventors and Discoveries. London: Marshall Cavendish Books, 1991
  • Diagram Group: Facts on File Chemistry Handbook. New York: Facts on File, 2000
  • Laidler, Keith: World of Physical Chemistry. New York: Oxford University Press, 1995
  • Lomask, Milton: Invention and Technology Great Lives. New York: Charles Scribner’s Sons, 1994
  • Philbin, Tom: The 100 Greatest Inventions of All Time. New York: Citadel Press, 2003
  • Schwacz, Joe: The Man Behind the Burner: Robert Bunsen’s Discoveries Changed the World of Chemistry in More Ways Than One. Chicago: Thomas Gale, 2005
  • Tuniz, R. J.: Accelerator Mass Spectrometry. New York: CRC Press, 1998
  • John Gribbin: 13,8. A Világegyetem valódi kora és a mindenség elmélete nyomában. Icon Books, London, 2015. Magyarul: Akkord Kiadó, 2016. Talentum Könyvek, p. 37–38. ISBN 978 963 252 093 3; ISSN 1586-8419


Kapcsolódó cikkek[szerkesztés]