„Valós számok” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][nem ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Xqbot (vitalap | szerkesztései)
a Bot: ca:Nombre real egy kiemelt cikk; kozmetikai változtatások
Hason Ló (vitalap | szerkesztései)
→‎Axiomatikus megközelítés: Pl. itt is látható http://www.komal.hu/cikkek/kg/oroszlan/oroszlan.h.shtml
36. sor: 36. sor:
A valós számok egy ekvivalens axiómarendszere a ha van felső korlát, akkor szuprémum is van helyett az arkhimédeszi axiómát és a Cantor-axiómát választja. Ezzel egyes tételek bizonyítása könnyebb:
A valós számok egy ekvivalens axiómarendszere a ha van felső korlát, akkor szuprémum is van helyett az arkhimédeszi axiómát és a Cantor-axiómát választja. Ezzel egyes tételek bizonyítása könnyebb:


# Arkhimédeszi axióma: minden valós számhoz van nála nagyobb valós szám
# Arkhimédeszi axióma: minden valós számhoz található nála nagyobb természetes szám.
# Cantor-axióma: egymásba skatulyázott zárt intervallumoknak van közös pontja.
# Cantor-axióma: egymásba skatulyázott zárt intervallumoknak van közös pontja.



A lap 2014. május 4., 22:46-kori változata

A racionális számok és az irracionális számok együtt alkotják a valós számok halmazát. A valós számok halmaza és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A valós számok halmaza végtelen, hisz tartalmazza a szintén végtelen számú természetes, egész és tört számokat, tehát összességében a racionális számok halmazát, valamint az irracionális számok halmazát. Nincs olyan szám, amely egyszerre racionális és irracionális lenne, és a két halmaz elemein kívül más nem tartozik a valós számokhoz.

A számhalmaz létrehozásában alapvető volt a görögök felfedezése, miszerint kettőnek a négyzetgyöke (a négyzetátló hosszának mérőszáma) nem racionális szám, bár pontos, matematikaliag kielégítő definícióra a 19. századig kellett várni.

A valós számok halmazának matematikai jele (a latin realis szóból, ami valósat, valóságosat jelent).

Valós számok bevezetése

Valós számok megalkotása

Axiomatikus megközelítés

A valós számok egy modelljének nevezzük azt az R halmazt, amely tartalmaz két elemet (0 és 1), értelmezünk rajta két bináris operátort (+ és *, összeadás és szorzás) és egy bináris relációt (≤), valamint ezek kielégítik a következő tulajdonságokat:

  1. testet alkot, azaz :
    • Asszociativitás: és
    • Kommutativitás: és
    • A szorzás disztributív az összeadásra nézve:
    • Additiv semleges elem, a nullelem létezése:
    • Multiplikatív semleges elem, az egységelem létezése:
    • Additív inverz létezése:
    • Multiplikatív inverz létezése: ha , akkor
  2. R-en teljes rendezés ≤, azaz minden :
    • Reflexivitás: x ≤ x
    • Antiszimmetria: ha x ≤ y és y ≤ x, akkor x = y
    • Tranzitivitás: ha x ≤ y és y ≤ z, akkor x ≤ z
    • Teljesség: x ≤ y vagy y ≤ x
  3. Az összeadás és a szorzás kompatibilis a rendezéssel, azaz minden x, y, z-re az R-ből:
    • Ha x ≤ y, akkor x + z ≤ y + z
    • Ha 0 ≤ x és 0 ≤ y, akkor 0 ≤ x*y
  4. Minden nem üres részhalmazának ha van felső korlátja R-ben, akkor van legkisebb felső korlátja (szuprémuma) is R-ben.

Az utolsó tulajdonság fontos, mivel az különbözteti meg például a racionális számok halmazától, mivel az a halmaz, amelynek az elemeinek négyzete kisebb kettőnél, rendelkezik racionális felső korláttal (2 például ilyen), de a legkisebb felső korlátja (a gyök kettő) nem eleme a halmaznak.

A valós számok egy ekvivalens axiómarendszere a ha van felső korlát, akkor szuprémum is van helyett az arkhimédeszi axiómát és a Cantor-axiómát választja. Ezzel egyes tételek bizonyítása könnyebb:

  1. Arkhimédeszi axióma: minden valós számhoz található nála nagyobb természetes szám.
  2. Cantor-axióma: egymásba skatulyázott zárt intervallumoknak van közös pontja.

Ezekkel a tulajdonságokkal kimutatható, hogy bármely két modell ami ezeket kielégíti, izomorf.

Az axiómarendszerek közvetlen következményei

  • A két axiómarendszer ekvivalenciája
  • Alulról korlátos halmaznak van infimuma, azaz legnagyobb alsó korlátja
  • Ha egy sorozat monoton nő és felülről korlátos, akkor konvergens. Hasonlóan, egy alulról korlátos monoton csökkenő sorozat is konvergens. A kettőt összetéve kapjuk, hogy ha egy monoton sorozat korlátos, akkor konvergens
  • konvergens sorozat határértéke egyértelmű

Források