Rocketdyne J–2

A Wikipédiából, a szabad enciklopédiából
Ugrás a navigációhoz Ugrás a kereséshez
J–2
J–2 rakétahajtómű tesztindítása
J–2 rakétahajtómű tesztindítása
Általános adatok
Származási ország Amerikai Egyesült Államok
Gyártó Rocketdyne
Tervező Abe Silverstein
Első repülés 1966. február 25.
Utolsó repülés 1975. július 15.
Rendeltetés űrrepülés

Típus folyékony hajtóanyagú
Hajtóanyag cseppfolyós hidrogén
Oxidálóanyag cseppfolyós oxigén
Műszaki adatok
Hossz3,4 m
Átmérő2,1 m
Tolóerő (tengerszint)486,2 kN
Tolóerő (vákuum)1033,1 kN
Ciklus gázgenerátor
Felhasználás
Felhasználás Saturn IB; Saturn V

A J–2 egy folyékony hajtóanyagú rakétahajtómű volt, amelyben sikeresen alkalmazták a cseppfolyós hidrogént és oxigént alkalmazó meghajtási módot. A rakétát a NASA megbízásából a Rocketdyne fejlesztette és a Saturn IB, illetve Saturn V rakétában használták az Apollo-program, a Skylab-program és a Szojuz–Apollo-program során

Története[szerkesztés]

Előzmények[szerkesztés]

A J–2 hajtómű történetének első lépései a hidrogén és oxigén reakciójából kinyerhető energiára vonatkozó felismeréssel indult. A technika első említése Konsztantyin Ciolkovszkíj alapművéből az Értekezés az úrutazásról című művéből ered, ahol az orosz tudós egy cseppfolyós hidrogénnel és cseppfolyós oxigénnel működő rakétát ajánl, mint a világúr elérésére leginkább alkalmas eszközt. A kísérletek később alá is támasztották az elméletet, a hidrogén/oxigén keverék égése kb. 40%-kal nagyobb fajlagos teljesítményt generál, mint az RP–1, petróleum vagy kerozin alapú üzemanyag égetése.[1]

Az USA-ban 1945 végén írt ki a Haditengerészet Repülési Irodája egy programot, amely egy, cseppfolyós hidrogént és oxigént alkalmazó rakétahajtómű megvalósíthatósági tanulmányáról szólt. Ennek alapján meg is született a javaslat egy ilyen hajtású rakéta megalkotására, amelynek eleve űrhordozó eszköznek szántak. A feladatot elsőként a Kármán Tódor vezette Jet Propulsion Laboratory, amely a megvalósítást az Aerojet Engineering Corporationra bízta. A munka első eredménye egy olyan rakétahajtómű elemekből (injektorból, égéstérből) álló rendszer volt, amely 1,78–13,3 kN közötti tolóerőre volt képes. 1947-ben az Aerojet bemutatta az első, 13,3 kN tolóerővel bíró kísérleti hidrogén–oxigén hajtóművét. (Járulékos probléma volt, hogy cseppfolyós hidrogén sem állt elegendő mennyiségben rendelkezésre, az éppen erre alapított üzem, amely a világon az akkori legnagyobb mennyiségben volt képes, egy négy hónapos időszakban 2406 kg hidrogén előállítására volt képes, amely később egy Saturn V-repülés töredékére sem lett volna elegendő).[1]

A JPL és az Aerojet sikerein felbuzdulva a Navy elindította a HATV (High Altitude Test Vehicle – Nagy Magasságot Elérő Teszt Jármű) programját, amelyre a North American Aviationt bízzák meg. A programból végül soha nem lett testet öltött valódi rakéta formájában, azonban a kutatási eredményei fontosnak bizonyultak a későbbi fejlesztésekhez.[1]

Egy másik fejlesztési irány is megcélozta a hidrogén–oxigén hajtást, a NACA Lewis Központja és a General Dynamics Corporation Astronautics Division közösen próbálkozott hajtómű fejlesztéssel. A fejlesztés a Centaur nevű rakétafokozatban öltött testet. A Lewis központban Abe Silverstein lett az igazgató és az ő nevéhez fűződik ennek a technikának a fejlesztése. A Lewis Központban többféle irányban folyt a kriogén rakéták kutatása, amikor felmerült az Atlas rakétákon való alkalmazásuk lehetősége, amelyet a General Dinamics fejlesztett. Az elképzelések egy rakéta második (pl. Atlas), vagy harmadik (pl. Saturn) fokozataként irányozták elő egy hidrogén–oxigén hajtású fokozat létrehozását. A munkához a General Dynamics bevonta a Pratt & Whitney hajtóműgyártót is, amelynek műhelyében már formálódott az RL–10 jelű hajtómű. Az első RL–10-es repülési tesztjére 1962. június 9-én került sor.[1]

Kicsit később az RL–10-est kiválasztották, hogy a Saturn I rakéta második fokozatába építve szolgáljon. A korábbi Centaur felső rakétafokozat mintájára, ahol létezett olyan változat, amelybe két hajtóművet építettek, a Saturn I S–IV fokozata hat darab RL–10-est kapott, amelyek így együttesen 400 kN tolóerőt képviseltek.[1]

A NASA érdekkörébe tartozott a nagy tömegek Föld körüli pályára juttatása (míg a haderőnemek követelményeiből ez az ág lassan kiszorult az 50-es évek végére, 60-as évek elejére, így az űrhivatalt továbbra is foglalkoztatta a tény, hogy a hidrogén–oxigén hajtással nagyobb fajlagos tolóerő érhető el. 1959 őszén jelentek meg az űrhivatal berkein belül az első tanulmányok, amelyek egy 665 kN tolóerejű, hidrogén–oxigén hajtású hajtómű megvalósíthatóságát tárgyalták. A tanulmány eredményei később a lehetséges tolóerőt 890 kN-ra növelték, amelyet akár egy, akár több, csokorba kötött hajtómű alkalmazásával is – és így a tolóerő egyetlen rakétafokozatban való többszörözésével – lehetségesnek látszott megvalósítani. Ezek a tanulmányok hamar eljutottak a szintán a NASA-n belül működő Saturn Hordozóeszköz Csoporthoz (Saturn Vehicle Team), ismertebb nevén a Silverstein-bizottsághoz, amely a fejlesztendő nehézrakéták lehetséges fejlesztési irányait kereste és vázolta fel az űrhivatalon belül. A Silverstein-bizottság be is emelte a fejlesztési javaslatai közé a hidrogén–oxigén hajtás ezen lehetőségét 1959. december 15-i jelentésébe. A megvalósíthatóságról szóló tárgyalások a North American Repülőgépgyár Rocketdyne részlegével kezdődtek el és 1960 szeptemberében meg is köttetett a kontraktus.[1]

A Rocketdyne a fejlesztést egy új módszerrel, analitikus komputermodellezéssel kezdte, amelyben számítógéppel szimulálták a hajtómű lehetséges paramétereit. A tényleges fejlesztést a kutatásfejlesztésben amúgy is élen járó, az F–1 és H–hajtóműveket is tervező, Los Angeles-i részleg kapta.[1]

Fejlesztése[szerkesztés]

A hajtómű fejlesztése rohamtempóban indult a Rocketdyne-nál. Két hónappal azután, hogy a cég elnyerte a szerződést a NASA-tól, az első kísérleti hajtómű komponensek megérkeztek a cég tesztbázisára, a Santa Susana Field Laboratoryba, ahol hajtóműtesztekhez alkalmas próbapadok álltak. Az első ún. hot-firing (éles hajtóműteszt) – egyelőre még csak egyes hajtóműkomponensekkel – 1960. november 11-én zajlott le. Hamarosan egy vákuumkamra is megnyitotta a kapuit, ahol a tesztekhez űrbeli körülményeket tudtak szimulálni. Kicsit később a J–2 hajtóműtesztek egy dedikált, csak a hajtómű számára szánt létesítményt kaptak, amely 1961. novemberében nyílt meg.[1]

A hajtómű komponensek korábbi tesztjeivel 1962 végére áll össze annyi tapasztalat, hogy 1963 elején elkezdődhessen az első komplett tervrajzok lefektetése. A feladat kettős volt: egyrészt a hajtóműnek újraindíthatónak kellett lennie, másrészt egy új tervezési filozófia mentén a hajtómű nem egyszerűen egy meghajtó motor volt, hanem egy teljesen integrált rendszer egy rakétafokozaton belül, amely a meghajtáson kívül más funkciókért is felelt. Az utóbbi megoldás elősegítette a hajtóműtervezésnél egyébként is divatos irányelv, az egyszerűsítés érvényesülését, a sok önálló részegység helyett egy integrált rendszer jött létre. Az előbbi problémára pedig egy egyszerű starttartály beszerelése volt a megoldás, amely 1 kg hidrogént tartalmazott, amely az újraindításkor azonnal rendelkezésre állt a hajtómű égéséhez, amíg a főtartályból a csőrendszeren át megérkezett a hidrogén tömegáram. [1]

Az egyik legnagyobb problémát a hajtómű teljesítmény dimenziói adták. A tervezés jórészt az RL–10-essel szerzett tapasztalatok alapján indult ám az RL–10 67 kN-os teljesítményének előállításához teljesen más üzemanyag-áramlással és hőmennyiségekkel kellett számolni, mint a megcélzott 890 kN esetében. A tervezők például a kerozinhajtásnál már bevált réz tányér injektorokat alkalmazták, ám az új hajtómű esetében a keletkező hő egyszerűen átégette ezt az alkatrészt (a teszteknél azt a jelenséget figyelték meg, hogy a teljesen más hőáramlással járó hidrogén–oxigén égés során zöld lángok jelennek meg az alkatrész körül, ahogy a réz elégett). Az Marshall Űrközpontban a problémára már korábban kutatások indultak, ahol egy Rigi-Mesh nevű anyagot kezdtek el alkalmazni, amelyet a nukleáris alkalmazásokból emeltek át. Kisebb súrlódás keletkezett, amikor a NASA az MSFC megoldását kezdte erőltetni, miközben a Rocketdyne saját fejlesztéssel akart előrukkolni, végül győzött a Rigi-Mesht alkalmazó megoldás és az injektor kiégése megszűnt. A megfelelő anyag kiválasztása mellett egy újabb műszaki megoldás is segítette az átégés megoldását: az injektortányér összesen 614 önálló befecskendező szájból állt össze, amelynek áramlási képét úgy oldották meg, hogy az átfolyó tüzelőanyag kb. 5%-a folyton az injektorszájban megállt, és a szuperhideg folyadék tovább hűtötte az egész injektort.[1]

Az égéstér belépő része több száz csőből épült fel, amelynek optimális kialakításában nagy hasznát vették a komputer támogatta modellezésnek, lényegében az ennek eredményeként létrejött adatokra támaszkodtak. Az injektorba végül 360 csövön keresztül érkezett a –253 C°-os cseppfolyós gáz, ahol az felmelegedett –162 C°-ra és gáz halmazállapotúvá vált. Itt a gáz hatalmas sebesség-változásokon kellett átmenjen: 18 m/s-ról a tágulás miatt 300 m/s-ra nőtt a sebessége az injektor torkáig majd az injektor belépési pontjánál 240 m/s-ra csökkent. A komputer modell nagyban segített a csőrendszer alakjának, hajlatainak optimális kialakításában, amely a leghatékonyabb gázáramlást és hőtani folyamatokat tette lehetővé.[1]

A hajtómű táplálását – sok más, korábbi hajtóműdizájnhoz hasonlóan – turbószivattyúk látták el. A tervezők különválasztották a cseppfolyós oxigén és hidrogén szivattyúrendszerét és a két egységet a hajtómű két átellenes oldalán helyezték el. Ezzel a megoldással elkerülték a korábbi, kompromisszumokra kényszerítő megoldást, amellyel azonos tengelyen helyezték el a szivattyúkat. A két külön szivattyúrendszer kialakításában is különbözött. A cseppfolyós oxigén szivattyú centrifugál szivattyú volt, amely kb. 6000 fordulat/perc sebességgel működött. Ezzel szemben a hidrogénszivattyú, axiális egység volt, amely 25 000 fordulat/perc sebességgel dolgozott. A két rendszer megfelelő kalibrálásával elérhető volt a megfelelő gázkeverék arány. A turbina táplálásáért – és egyben indításkori felpörgéséért – a gázgenerátor volt felelős. A korábbi hajtóműveknél a gázgenerátor indításához elegendő volt a tüzelő és oxidálóanyag-tartály szelepeinek kinyitása és a nyomás beindította a berendezést, ám ezúttal ez kevésnek bizonyult. A megfelelő indításhoz beszereltek egy gömb alakú indítótartályt, amelyben 0,1 köbméternyi nagy nyomású hidrogéngázt helyeztek el és ez felelt az indításért, amíg a főtartályból megérkezett a megfelelő nyomású és mennyiségű gáz.[1]

A fejlesztés 1963 májusáig tartott, amikor megkezdődött a hajtóművek gyártása, annak ellenére, hogy a fejlesztési program még mind a Rocketdyne-nál, mind a Marshall Űrközpontban tovább zajlott. Az első gyártmányokat próbapadi tesztekre szánták, így az első példány 1964 áprilisában érkezett meg az S–IVB-t gyártó Douglas repülőgépgyár Sacramento melletti telepére. A fokozatba való beszerelését követően 1964 decemberében került sor az első tesztre, amelyen rögtön egy teljes működési időtartamú (410 másodperces) gyújtást végeztek el vele. Később a tesztelés egészen 1966 januárjáig folytatódott, amely tesztsorozatban 30 alkalommal indították be a hajtóművet, benne összesen öt olyan próbával, amikor 470 másodpercre emelve a teljes működési időt, teljes idejű tesztindítást szimuláltak. A tesztek során összesen 3774 másodpercnyi működést regisztráltak, amely kb. nyolcszorosan haladta meg a szükségesként előírt élettartamot. A sikeres tesztek végén a hajtómű készen állt az első repülési tesztre az AS–201-en, amelyet 1966 elejére terveztek egy Saturn IB felbocsátásával (amelynek második, S-IVB fokozatában szerepelt a J–2). A tesztek során egyetlen egyszer történt meghibásodás, 1965 júliusa során az egyik hajtóműindítás során a pneumatikus tartóegységek egyikének hibája során idő előtt állt le a hajtómű. A hibát már a következő hónapra kijavították és a következő próba során tökéletesen működött a J–2.[1]

A repülési engedélyt a hajtómű 1966 elején kapta meg és az AS–201-gyel sikeres repülést tudott bemutatni a NASA. A siker nyomán 1966 júliusában a NASA megerősítette a Rocketdyne-nak kötött gyártási szerződését egészen 1968-ig kitolva azt és összesen 155 J–2-t rendeltek meg.[1]

További fejlesztések[szerkesztés]

J–2S[szerkesztés]

A Rocketdyne nem elégedett meg a NASA-tól a zsebében levő szerződéssel és az arra fejlesztett hajtóművel, a jövőre való tekintettel elindított egy másik fejlesztési ágat is J–2X jelzéssel még 1964-ben. Ennek lényege a tolóerő tovább emelése volt. A fejlesztések a hajtómű tüzelőanyag ellátására fókuszáltak: a gázgenerátoros táplálást kicserélték az ún. lecsapolásos gázellátásra, amikor az égést és a hajtómű belépő meghajtását az égéstérből visszavezetett forró gázokkal oldották meg. Az ilyen módon elhagyott részegységek miatt tovább egyszerűsödött a hajtómű és nőtt az égés hatékonysága.[2]

A kísérleti hajtómű másik újítása a tolóerő szabályozhatósága volt. Ehhez a tüzelőanyag/oxidálóanyag keverékén változtattak és ennek megvalósítására építettek be egy rendszert. A rendszer mellékterméke egy ún. „üresjárati üzemmód” volt, amelynek során sokkal kisebb teljesítményen működött a hajtómű, amelyet a Föld körüli keringésben való manőverezéshez, vagy a hajtóanyag ülepítéséhez is lehetett használni (ezeket a funkciókat külön manőverező hajtóművek, vagy ülepítő hajtóművek végezték a másik típusoknál). [2]

A kísérleti program során előállt tervekből meg is építettek néhány prototípust, vagy nullszéria példányt, amely a J–2S jelet kapta és amelyeket tesztcélokra szántak. Összesen hat darab ilyen modell épült, amelyekkel 1965 és 1972 között végeztek próbapadi kísérleteket, amelyek során 30 858 másodpercnyi működési tapasztalatot gyűjtöttek. A fejlesztések az Apollo-program utáni, ám az Apollo hardver felhasználásával történő felhasználásra alapultak, ám 1972-re nyilvánvalóvá vált, hogy az USA felhagy az Apollo–programmal és a későbbiekben teljesen más technikai alapokra helyezi az űrtevékenységét, így a Space Shuttle-programra már nem lesz szükség a J–2-re, így törölték a programot.[2]

J–2T[szerkesztés]

A J–2S fejlesztése nem volt egy lineáris fejlesztés, hanem további fejlesztések indultak és ágaztak el a változatból. Ezek között volt a J–2T változaté is, amelynek rögtön két alváltozata is napvilágot látott. A fejlesztés lényege, hogy a J–2S turbószivattyúit egy vadonatúj, toroidális (gyűrűs) égéstérhez csatolták, valamint a harang alakú hajtóműharangot lecserélték egy aerospike (fordított kúpos) fúvócsőre. Ezzel sikerült további tolóerő növekedést elérni. A J–2–200k változat még ugyan csak 890 kN teljesített, de valós alternatívát nyújtott az egyébként a Saturn V-ben használatos J–2 alapváltozathoz szükség esetére, a következő változat, a J–2–250k már 1100 kN-ra volt képes.[3][4]

A J–2S-hez hasonlóan ezek a változatok is hosszas próbapadi teszteken estek át, majd az Apollo-érát követő átalakítások folyamán törölték a további fejlesztésüket, vagy felhasználásukat.

J–2X[szerkesztés]

A hajtómű hosszú tetszhalált követően 2007-ben támadt fel J–2X néven. A korábbival azonos nevű, de teljesen más technikai tartalmat hordozó hajtóművet a Constellation programban kívánta alkalmazni a NASA, miszerint a Saturn rakéták J–2-eseinek bázisán, azok továbbfejlesztésével kaphasson egy új hajtóművet. A tervek szerint egy 1310 kN tolóerejű szerkezettel lehetett volna a Constellationhoz fejlesztendő Space Launch System Earth Departure Stage nevű fokozatát meghajtani. A fejlesztést a NASA saját berkein belül kezdte – és állított fel tesztrészleget a célra a Stennis Űrközpontban2007. augusztus 23-án. 2007 december és 2008 májusa között régi fennmaradt J–2-esek felhasználásával összesen 9 tesztet végeztek, amellyel előkészítették a J–2X későbbi fejlesztéseit.

Az új hajtóművek tervezési céljai között fő szempont volt, hogy egyszerűbb legyen az ős J–2-esnél és olcsóbb legyen, mint az űrrepülőgépek főhajtóműve. Ennek érdekében eltávolítottak minden berilliumot tartalmazó elemet, modern elektronikát szereltek be, az axiál szivattyút centrifugális turbószivattyúra cserélték, másak lettek az égéstér és a fúvócső arányai, valamint magát az égéstér csövezését is átalakították. A NASA végül 2007. július 16-án jelentette be, hogy a Pratt & Whitney Rocketdyne-nal köt szerződést, 1,2 milliárd dollár értékben, hogy az Ares I és Ares V rakétákhoz „tervezze meg, fejlessze ki, tesztelje és tegye repüléskésszé a J–2X hajtóművet”. A P&W hozzá is látott a munkához és 2008. szeptember 8-án bejelentette, hogy először tesztelte sikerrel az új hajtómű gázgenerátorát, majd tovább a későbbi tesztek sikerességét egészen 2010. szeptember 21-ig.

2010. október 11-én az események más irányt vettek, Barack Obama elnök bejelentette a Constellation-program törlését. Ugyanakkor az amerikai űrkutatási célok között megmaradt a nagy kapacitású Space Launch System kifejlesztése, így a korszerű hajtóműre is szükség volt továbbra is, így a hajtóműfejlesztést nem érintette a program leállítása. Az új hajtómű próbaindítására 2011 júniusában került sor. míg az első teljes időtartamú (499,97 másodperces) próbapadi hajtóműindítás 2011. november 9-én történt meg.

Felépítése[szerkesztés]

Égéstér[szerkesztés]

Egy ábra a J–2 hajtómű részegységeiről és a gázáramlásáról

A hajtómű központi részegysége az égéstér volt, ez szolgált a többi részegység „tartóállványaként” is. Részegységei a következők voltak: maga a harang alakú égéstérpalást, az injektor és a felső kupola, a sugáreltérítő csapágyháza és egy szikráztató berendezés. Magát az égésteret 0,30 milliméteres falvastagságú rozsdamentes acél csövekből építették fel, amelyeket függőleges kötegekbe rendeztek és összeforrasztottak, hogy egy egységet képezzenek. Maga a kamra harang alakú volt és 27,5-szeres gáztágulásnak tudott teret biztosítani és a hűtéséről a szuperhideg hajtóanyag gondoskodott. A hajtóanyag egy csőrendszeren keresztül jutott be az égéstérbe, nagyjából a kamra közepe táján, kb. 900 kPa nyomáson, ahonnan először 180 csövön keresztül a kamra felének megfelelő úton előbb lefelé haladt, majd 180 fokos fordulattal, immár 360 csövön át feljutott egészen az injektorig. Amint a hajtóanyag bejutott az injektorba, egy szikráztató berendezéssel begyújtották, amelynek révén a robbanásszerűen táguló gázok hajtóerőt kezdtek termelni.[5]

A hajtóanyag először az injektorba jutott, amelynek az volt a feladata, hogy megfelelő módon szétoszlassa a csöveken érkező gázt a legoptimálisabb égés elősegítésére. Ehhez 614 oxidáló vájatot képeztek rajta, amelyek integráns módon kapcsolódtak az üzemanyag befecskendezőkhöz, amelyeket átfűzték és a kimenetüket pontosan a koncentrikus körökben elhelyezett oxidáló posztok felett helyeztek el. Az injektor felülete lyukacsos volt és rétegelt rozsdamentes fémhálóból alakították ki, amelyet az injektor testéhez forrasztottak. Az oxidálóanyag a felső kupolaszerkezet csövezéséből érkezett és keresztül injektálták az oxidáló posztokon, egészen az égéstérig, míg a hidrogén hajtóanyag is felülről érkezett a csöveken megtett útját követően és tüzelőanyag nyílásokba injektálták, amelyek az oxidáló posztokhoz hasonlóan, azokkal párhuzamosan szintén koncentrikus körökben voltak kiképezve. Itt végbement a két anyag keverése. Mindezek a részegységek a hajtómű legtetején kaptak helyet egy felső, lezáró kupola alatt, amely helyet biztosított mind a gázszállító csöveknek, mind pedig a rakéta irányításáért felelős vektoráló rendszer csapágyazásának, mind pedig az összekevert gázokat begyújtó szikráztatónak.[5]

További fontos részegység volt a szikráztató. A berendezést az injektor belépő részéhez építették be és az volt a feladata, hogy begyújtsa a hajtóanyagot, amit aztán befecskendeztek az égéstérbe. Amikor a hajtóműindítási parancs megérkezett, a szikragerjesztők két gyújtógyertyát hoztak működésbe, amelyeket az égéstér két oldalára szereltek be. Ezzel egyidőben az irányítórendszer megindította a hajtóanyag és az oxidálóanyag áramlását a szikráztató felé és amint a két anyagot összevegyítették, a rendszer begyújtotta az elegyet, miközben a megfelelő gyújtást egy, a szikráztatóra szerelt gyújtásfigyelő rendszeren át figyelték meg. A szikráztató a teljes gyújtás ideje alatt folyamatosan működött és képes volt többszöri újraindításra bármilyen környezeti körülmények között.[5]

A hajtómű tolóerejét egy, a tolóerő vektorálhatóságát (és így a rakéta irányítását) szolgáló csuklós szerkezet (gimbal) adta át a rakéta(fokozat) szerkezetének. Ezt az injektor és a felső kupola fölé, ahhoz rögzítetten szerelték be. Ez egy előfeszített (kb. 140 000 kPa nyomás, gömb alakú. belül üreges csapágyszerkezet volt. A csapágyazás egy teflon/üveggyapot borítást kapott, amely alacsony súrlódású, száraz felületet adott. A csukló kapott egy oldalsó beállító szerkezetet, amely az égéstér és a rakéta állásszögét állította be a repülési profilnak megfelelően úgy hogy a legmegfelelőbben adódjon át a tolóerő az injektor szerkezete és a rakéta teherviselő szerkezete között. A csukló úgyszintén kapott egy tengelyvéget, amellyel a tolóerő vektorálását végezhették el.[5]

Üzemanyag rendszer[szerkesztés]

Az üzemanyag rendszer két különálló üzemanyag és oxidálóanyag turbószivattyúból állt, amelyet kiegészítettek még különböző szelepek (a fő hajtóanyag szelep, a fő oxidálóanyag szelep, a hajtóanyag szabályzó szelep és a hajtóanyag valamint oxidálóanyag víztelenítő szelep), valamint a hajtóanyag illetve oxidálóanyag átfolyásmérők és az összekötő csövezés.[5]

Hajtóanyag turbószivattyú[szerkesztés]

A turbószivattyút, amely a cseppfolyós hidrogén üzemanyagot továbbította az égéstérbe, annak oldalára szerelték. A szivattyú egy turbinahajtású, axiális elrendezésű szerkezet volt, amely egy induktorból, egy hétfokozatú rotorból és egy állórészből tevődött össze. Ez a nagy sebességű szerkezet 27 000 fordulat/perc sebességgel működött és arra tervezték, hogy a hidrogén hajtóanyag 210 kPa nyomását 8450 kPa-ra növelje és tápláljon vele egy nagynyomású vezetéket, olyan átfolyási sebességgel, hogy az képes legyen 1600 kW-nak megfelelő teljesítményre. A turbószivattyú működését egy nagy sebességű, kétfokozatú turbina biztosította. A gázgenerátorból érkező forró gáz a turbina belépő csőrendszerébe jutott, ahol kitágult és nagy sebességgel haladt tovább az első fokozat turbinakereke felé. Miután átjutott a gáz ezen a keréken, irányt változtatva bevezették az állórész lapátjainak gyűrűje közé, ahonnan beléphetett a második fokozat turbinakerekébe. Innen a gáz turbinát a kilépő vezetékeken hagyta el. Három, sorban elrendezett dinamikus tömítés előzte meg, hogy a turbina működésénél használt folyadékok és a rakéta meghajtásához használt gázok összekeveredjenek. A nagy sebességű szerkezet csapágyazásának kenését is maga a hideg hajtóanyag biztosította, mivel semmilyen más folyadék nem lett volna megfelelő az áthaladó közeg hőmérséklete miatt.[5]

Oxidálóanyag turbószivattyú[szerkesztés]

A cseppfolyós oxigént a hajtóműve továbbító turbószivattyú egy másik, a hajtóanyag szivattyújától teljesen független berendezés volt, amelyet szintén az égéstér oldalára – a hajtóanyag szivattyújával átellenes oldalára – szerelték. Felépítésében viszont teljesen különbözött a másiktól: ez a szerkezet egy egyfokozatú centrifugál szivattyú volt, direkt turbina hajtással. Ennek a szivattyúnak is az volt a feladata, hogy a főtartályokból érkező oxigén nyomását drámaian megnöveljék és nyomják be az égéstér nagynyomású csőrendszerébe. Ez a szivattyú azonban csak 8600 fordulat/perc sebességgel működött és 1600 kW teljesítményt adott le. A szivattyú és a két turbinakerék közös tengelyen került elhelyezésre (innen a direkt hajtás). A hajtóerőt, amellyel a szivattyút működtették egy két fokozatú turbina termelte, amelyet a gázgenerátorból kilépő gázok hajtottak.[5]

A hajtómű beindulásakor a forró gáz elkezdett áramolni és belépett a fúvókákba, majd onnan az első turbinafokozat turbinakerekébe. Ahogy elhagyta ezt a turbinakereket, a turbina állórészének pengéi kissé változtattak az áramlás irányán, így áramlott tovább a gáz a második fokozat turbinakerekéhez. Innen a gáz elhagyta a turbinát és belépett a turbina kilépő csőrendszerébe, majd a hőcserélőbe és végül bejutott az égéstérbe egy csőrendszeren keresztül, ahová a hajtóanyag betáp csövei felett közvetlenül érkezett meg.[5]

Hajtóanyag és oxidálóanyag áramlásmérők[szerkesztés]

A hajtóanyag és az oxidálóanyag áramlását mérő eszközök spirális szárnyakkal ellátott, rotor típusú mérők voltak, amelyeket a hajtó- és oxidálóanyag csővezetékekben helyeztek el, azok nagynyomású vezetékszakaszán. A két mérőműszer különbözött egymástól: a hidrogén áramlásmérő egy négyágú rotorral működött és 3700 fordulat/perc üzemi fordulaton működött, és egy fordulat során négy elektromos impulzus keletkezett rajta, míg a LOX mérőműszere hattollú volt és 2600 fordulat/perc sebességgel forgott, miközben egy fordulat alatt hat elektromos impulzust generált.

Szelepek[szerkesztés]

Az üzemanyag és az oxidálóanyag rendszerbeli áramlásának fontos alkatrészei voltak a különböző szelepek. A rendszer ezekből a következőket tartalmazta: fő üzemanyagszelep, fő oxidáló anyag szelep, hajtóanyag szabályzó szelep és oxidáló anyag víztelenítő szelep. Ezek egyidőben biztosították a gázok megfelelő időzítésű, mennyiségbeli áramlását a lehető legzavartalanabb módon.

  • Fő üzemanyag szelep: a hajtóanyag-áramlást szabályozó fő egység egy pillangószelep volt, amelyet zárt pozícióban tartottak rugóerő segítségével és pneumatika segítségével nyitották üzemi állásba, illetve zárták. Elhelyezésére a hajtóanyag turbószivattyú és a belépő hajtóanyag csőrendszer között helyezték el. Ez a szelep volt felelős a hajtóanyag égéstérbe való áramlásáért. Működés közben a hajtómű indítás parancsra az indítási szakasz irányító szelepe által került nyomás alá egy pneumatikus szabályozó rendszer által és amikor ez utat nyitott, szabaddá vált a gázáramlás a hajtóanyag beömlő csőrendszer felé.
  • Fő oxidálóanyag szelep: az oxidálóanyag-áramlást szabályozó fő egység is egy pillangószelep volt, amelyet a másik főszelephez hasonlóan zárt pozícióban tartottak rugóerő segítségével és pneumatika segítségével nyitották üzemi állásba, illetve zárták. A főszelepnek két (első és második fokozatbeli) működtető szelepe volt, amelyeket pneumatikus úton nyitható, szabályzó mágnesszelep megnyitásával hoztak működésbe. Ezzel a megoldással el tudták érni a főszelep fokozatos nyitását (amelyet egy hőmérséklethez igazodó szabályozó rendszer is segített), és így minden hőmérsékleten való megbízható működését.
  • Hajtóanyag-szabályzó szelep: ennek a kiegészítő szelepnek a feladata a hajtóanyagtartályok párhuzamos és pontos ürítése volt és az oxidálóanyag turbószivattyú kilépő csigavonala mellett helyezték el. Működését elektromos úton, motorhajtással oldották meg. A működés során az üzemanyagtartályokba épített üzemanyagszint érzékelők szabályozták a szelep nyitásának állását és biztosították a tartályok tartalmának egyforma ütemű ürítését. A szabályzó szelep egy másik funkciója volt, hogy szabályozni lehetett általa a tolóerőt, mégpedig az égéstérbe engedett hajtóanyag mennyisége és ezáltal a hidrogén/oxigén keverék arányának változtatásával. Ha szelep kevesebb hidrogént juttatott az égéstérbe, akkor el lehetett érni az 5,5:1 hidrogén/oxigén keverési arányt, amely a leghatékonyabb égést biztosította és kb. 1000 kN-nal növelte meg a tolóerőt. Ezt a konfigurációt általában a repülés kb. 70%-ban alkalmazták egy tipikus Apollo repülésen. Amikor teljesen nyitott állapotba állították a szelepet, akkor a keverési arány 4,5:1-ig csökkent és rengeteg felesleges, elégetlen hidrogén is távozott a hajtóműből és a teljesítmény is lecsökkent. Ezt a repülés 30%-ban alkalmazták, hogy elkerüljék a tartályok aszimmetrikus kiürülését, illetve, ha más repülési profil mentén kevesebb hajtóerőre volt szükség.
  • Oxidálóanyag ürítő szelep: a rendszer utolsó szelepe egy tányérszelep volt, amelyet mind a hajtóanyag-, mind az oxidáló anyag rendszerben alkalmaztak. Normál, üzemen kívüli helyzetben rugóerővel nyitva tartott eszköz volt, amelyet a nyomás zárt be. Az összes ilyen típusú szelepet a hozzájuk tartozó turbószivattyú rendszertöltő csöveiben helyezték el a kilépő peremeknél. Ezek a szelepek tették lehetővé, hogy a hajtóanyag a hajtóanyag betápláló rendszerben cirkuláljanak, amíg a rendszer csőhálózata el nem érte az üzemi hőfokot a hajtóműindítást megelőzően, majd a beindítást követően egy szolenoid vezérelte héliumszelep a pneumatikus szabályozó rendszerben aktiválódott és a nyomás bezárta a szelepet, amely zárva maradt a teljes további működési idő alatt.

Gázgenerátor és turbina tápláló rendszer[szerkesztés]

A gázgenerátor, mint rendszer a következő elemekből épült fel: a gázgenerátor, a gázgenerátor szabályozó szelep, a turbina kilépő rendszere és a kilépő csőrendszer, a hőcserélő és a turbina áthidaló szelep.

Gázgenerátor[szerkesztés]

Szelepek[szerkesztés]

Turbina kilépő gázrendszer[szerkesztés]

Hőcserélő[szerkesztés]

Indítótartály[szerkesztés]

Irányító rendszer[szerkesztés]

Jegyzetek[szerkesztés]

  1. a b c d e f g h i j k l m n Roger E. Bilstein: SP-4206 Stages to Saturn – 5. Unconventional Cryogenics: RL-10 and J-2 (angol nyelven). NASA. (Hozzáférés: 2021. március 2.)
  2. a b c Mark Wade: J-2S (angol nyelven). Astronautix. (Hozzáférés: 2021. március 30.)
  3. Mark Wade: J-2T-200k (angol nyelven). Astronautix. (Hozzáférés: 2021. március 30.)
  4. Mark Wade: J-2T-250k (angol nyelven). Astronautix. (Hozzáférés: 2021. március 30.)
  5. a b c d e f g h Saturn V News Reference – J–2 Engine Fact Sheet (angol nyelven). NASA. (Hozzáférés: 2021. április 11.)

Források[szerkesztés]

  • * Roger E. Bilstein: Stages to Saturn – online könyv a Saturn rakétákról (angol nyelven)

Kapcsolódó cikkek[szerkesztés]