Poliéder

A Wikipédiából, a szabad enciklopédiából
A trigondodekaéder egy olyan speciális poliéder, amelynek minden lapját szabályos háromszögek alkotják

A poliéder egy olyan térbeli test, amelyet minden oldalról síkok határolnak. Poliéder például a kocka. A poliéder fogalma általánosítható magasabb dimenziójú vektorterekre is.

Háromdimenziós poliéderek[szerkesztés | forrásszöveg szerkesztése]

A közismertebb háromdimenziós poliéderek közé tartoznak a kockákon kívül a tetraéderek, a sokszög alapú hasábok, gúlák és a paralelepipedonok. A kristályok, dobótestek, piramisok, a nyitott ajtajú szekrények poliédereknek tekinthetők. Nem poliéderek a gömbök, golyók, flakonok, tortaszeletek, mivel görbe vonalú határuk is van. Speciális poliéderek a szabályos testek.

Egy 24 csúcsú, 72 élű és 48 lapú tórikus poliéder

A konvex poliéderekre fennáll Euler törvénye:

C + L - E = 2.

ahol C a csúcsok, F a lapok és E az élek száma.

Általánosabban, az összefüggő poliéderekre

C + L - E = \chi.

ahol χ a poliéder Euler-karakterisztikája. A tórusz, és a tórikus poliéderek karakterisztikája nulla.

Példa:

egy 24 csúcsú, 72 élű és 48 lapú tórikus poliéder:

C + L - E = 24 − 72 + 48 = 0.

Szimmetria[szerkesztés | forrásszöveg szerkesztése]

A szabályos poliéderek azok, amiket egybevágó szabályos sokszöglapok határolnak, és amiknek csúcsai egyformák. Három dimenzióban öt, négy dimenzióban hat, magasabb dimenzióban dimenziónként három szabályos test létezik.

Ha a szabályos testekre vonatkozó kikötések közül egyes feltételeket elhagyunk, akkor hasábokat, arkhimédeszi testeket kapunk. Az ezekbe a kategóriákba nem tartozó, de szabályos lapokkal határolt konvex testek a Johnson-testek. További nagy fokú szimmetriát mutatnak az arkhimédészi testek duálisai, a Catalan-testek.

Általános poliéderek[szerkesztés | forrásszöveg szerkesztése]

Véges dimenziós vektorterekben is definiálhatóak a konvex poliéderek hipersíkokkal határolt félterek metszeteként lineáris egyenlőtlenségrendszerrel. Legyenek az a_1, \dots, a_n vektorok hipersíkok normálvektorai. A konvex poliéder ezeknek az egyik oldali féltereinek metszeteként adódik:

P := \bigcap_{i=1}^n \{x \;|\; a_i \cdot x \le b_i \} = \{x \;|\; A x \le b \}

ahol A az a_i sorvektorokból álló mátrix.

A poliéder korlátos, ha van gömb, ami tartalmazza. Ezeket politópoknak is nevezik. A politópok előállnak csúcsaik konvex kombinációjaként. A kétdimenziós politópokat poligonnak is hívják.

Minden konvex poliéder előáll, mint az extremális irányai által generált kúp és a csúcsai által generált csúcsos poliéder összege:

P: = conv{X} + cone{E}

Két dimenzióban a poliéder határának egyenesek, extremális irányainak félegyenesek felelnek meg.

Egy konvex poliéder egy lapja megkapható a poliéder és egy alkalmas hipersík metszeteként. Ez a hipersík a poliéder egy támaszhipersíkja, aminek a poliéder teljes egészében az egyik oldalán fekszik. Szemléletesen, ez megfelel annak, hogy a háromdimenziós térben hozzátolunk egy síkot a poliéderhez. Formálisan, ha a poliéder minden pontja eleget tesz az

a^T x \leq b

egyenlőtlenségnek, akkor a poliéder és az

\{x | a^T x = b \}

halmaz metszete lap, és minden lap megkapható így.

Speciálisan, az

0^T x \leq 0

egyenlőtlenség az egész, és az

0^T x \leq 1

egyenlőtlenség az üres halmazt adja. Egy n-dimenziós poliéder egy oldala egy (n-1)-dimenziós poliéder. Például, egy háromdimenziós kocka lapjai a kocka lapjai, élei, csúcsai, de az egész kocka és az üres halmaz is, de csak a kétdimenziós lapok oldalak.

Egy konvex poliéder csúcsa a poliéder egy olyan pontja, ami nem kapható meg a poliéder más pontjainak konvex kombinációjaként. Ez megfelel a szemléletes elképzelésnek. Ha egy poliédernek van csúcsa, akkor a poliéder csúcsos. Egy poliéder egy csúcsa elfajult, ha több oldal tartalmazza, mint amekkora a poliéder dimenziója. Például egy négyzet alapú gúla csúcspontja elfajult, mert négy oldal közös pontja. Egy konvex poliéder egész, ha csúcsainak minden koordinátája egész. A csúcsok éppen a nulladimenziós lapok.

Ezek fontos fogalmak az operációkutatásban, a lineáris és az egész értékű optimalizálásban, mivel egy lineáris program mindig egy csúcson veszi fel optimumát.

Speciális poliéderek[szerkesztés | forrásszöveg szerkesztése]

Források[szerkesztés | forrásszöveg szerkesztése]

  • Reiman István: Geometria és határterületei
  • Obádovics J. Gyula: Matematika
  • Frank András: Operációkutatás

Kapcsolódó szócikkek[szerkesztés | forrásszöveg szerkesztése]