Parabola (görbe)

A Wikipédiából, a szabad enciklopédiából
Parabola
Ez a szócikk egy matematikai fogalomról szól. A parabola más jelentéséhez kattints ide.

A parabola (a görög παραβολή-ből) egy kúpszelet, melyet körkúp-felület és sík metszésekor kapunk, ha a sík párhuzamos a kúp alkotójával. A parabolát úgy is lehet definiálni, hogy azon pontok mértani helye a síkban, melyek egyenlő távolságra vannak egy adott ponttól (fókuszpont, vagy gyújtópont) és egy ezen a ponton át nem haladó adott egyenestől (direktrix, vezéregyenes).

Különleges eset lép fel, ha a metszősík a kúpfelület érintősíkja. Ebben az esetben a parabola metszésvonal egyenessé fajul.

Definíciók és áttekintés[szerkesztés | forrásszöveg szerkesztése]

A parabola, mint tükör, a fókusz, a direktrix (zöld) és a vezérsugarak (kék)

A parabola egyenletei[szerkesztés | forrásszöveg szerkesztése]

Descartes-féle koordináta-rendszerben egy, az y tengellyel párhuzamos tengelyű parabolának egyenlete, melynek csúcsa (h, k), fókuszpontja (h, k + p) és direktrixe y = k - p, ahol p a fókusz távolsága a csúcstól:

(x - h)^2 = 4p(y - k) \,

vagy:

(y - k) = \frac{1}{4p}(x-h)^2 \,

Általánosabban: a parabola olyan görbe, mely a Descartes-féle derékszögű koordináta-rendszerben az alábbi alakú egyenlettel definiálható:

A x^2 + B xy + C y^2 + D x + E y + F = 0\,

ahol B^2 = 4 AC\,, az összes együttható valós, A és C nem zéró, és ahol több, mint egy megoldás, mely egy (x, y) pontpárt definiál a parabolán, létezik. Az egyenlet nem redukálható, ez azt jelenti, hogy az egyenlet nem szorzata két szükségszerűen független lineáris tényezőnek.

Más geometriai definíciók[szerkesztés | forrásszöveg szerkesztése]

Diáknóta a paraboláról

A parabolát úgy is lehet definiálni, hogy az egy olyan kúpszelet, melynek excentricitása 1. Ennek következményeképpen minden parabola hasonló egymáshoz. A parabola úgy is meghatározható, hogy azoknak az ellipsziseknek a határesete, melyeknek egyik fókuszpontja rögzített, a másik fókuszt pedig tetszőleges távolságba mozdítjuk el. Ebben az értelemben parabola ellipszisként fogható fel, melynek egyik fókusza a végtelenben van. A parabola a kardioid inverz transzformáltja.

A parabolának egyetlen tükörtengelye van, mely a fókuszán halad át és merőleges a direktrixére. A parabola és tengelye metszéspontját a parabola csúcsának nevezik. Ha a parabolát megforgatjuk tengelye körül, a súrolt felület a forgási paraboloid.

Egyenletek[szerkesztés | forrásszöveg szerkesztése]

Az egyenletekben szereplő jelölések: (h, k) a parabola csúcspontja, p a csúcspont és a fókuszpont közötti távolság (ha a csúcspont a fókusz alatt van vagy, ami ugyanezt jelenti, a direktrix felett, akkor p pozitív egyébként p negatív, hasonlóan vízszintes parabola-tengely esetén p pozitív, ha a csúcspont balra van a fókusztól, vagy ami ugyanazt jelenti, jobbra a direktrixtől.

Descartes-féle koordináta-rendszer[szerkesztés | forrásszöveg szerkesztése]

Függőleges szimmetria-tengely[szerkesztés | forrásszöveg szerkesztése]
(x - h)^2 = 4p(y - k) \,
y = a(x-h)^2 + k \,
y = ax^2 + bx + c \,
\mbox{ahol }a = \frac{1}{4p}; \ \ b = \frac{-h}{2p}; \ \ c = \frac{h^2}{4p} + k; \ \
h = \frac{-b}{2a}; \ \ k = \frac{4ac - b^2}{4a}.

Paraméteres egyenletek:

x(t) = 2pt + h; \ \ y(t) = pt^2 + k \,
Vízszintes szimmetria-tengely[szerkesztés | forrásszöveg szerkesztése]
(y - k)^2 = 4p(x - h) \,
x = a(y - k)^2 + h \,
x = ay^2 + by + c \,
\mbox{ahol }a = \frac{1}{4p}; \ \ b = \frac{-k}{2p}; \ \ c = \frac{k^2}{4p} + h; \ \
h = \frac{4ac - b^2}{4a}; \ \ k = \frac{-b}{2a}.

Paraméteres egyenletek:

x(t) = pt^2 + h; \ \ y(t) = 2pt + k \,
Általános parabola[szerkesztés | forrásszöveg szerkesztése]

Általános egyenlet olyan parabolának melynek fókuszpontja F(u, v), és vezéregyenesének egyenlete

n_1x+n_2y+c=0 \,

az

\frac{\left|n_1x+n_2y+c\right|}{\sqrt{{n_1}^{2}+{n_2}^{2}}}=\sqrt{\left(x-u\right)^2+\left(y-v\right)^2} \,

Semi-latus rectum és polárkoordináták[szerkesztés | forrásszöveg szerkesztése]

Polárkoordináták esetén, ha a parabola fókusza az origóban van, és a csúcsa a negatív x-tengelyen helyezkedik el, az egyenlet:

r (1 - \cos \theta) = l \,

ahol l a semi-latus rectum: a távolság a fókuszponttól a paraboláig a tengelyre merőleges egyenesen mérve.

A parabola ívhossza[szerkesztés | forrásszöveg szerkesztése]

A parabola ívhossza

A parabola ívhossza az O csúcsponttól az M pontig a következő (p a parabola paramétere):

OM = \sqrt {x\left( {x + \frac{p}{2}} \right)}  + \frac{p}{2}{\rm arsh}\sqrt {\frac{{2x}}{p}}
\frac{x}{y} kis értékeire érvényes a következő közelítő formula:
OM \approx y\left[ {1 + \frac{2}{3}\left( {\frac{x}{y}} \right)^2  - \frac{2}{5}\left( {\frac{x}{y}} \right)^4 } \right]

Parabolatükör[szerkesztés | forrásszöveg szerkesztése]

Ha forgási paraboloid alakú tükör fókuszába fényforrást helyezünk, a teljes felület a fénysugarakat a tengellyel párhuzamos nyalábban fogja visszatükrözni. Ezt a tulajdonságát használják fényszórók készítésére. Fordítva, ha gyakorlatilag párhuzamos fénynyaláb a tengellyel egy irányban vetődik a parabola alakú tükör felületére, a visszavert sugarak a fókuszban találkoznak. Ha elég nagy a parabola tükör felülete, a Nap összegyűjtött sugarai képesek meggyújtani a fókuszba helyezett gyúlékony anyagot, ezért is hívják a fókuszt gyújtópontnak. A parabolatükröknek ezt a tulajdonságait napkemencék és napkazánok építésénél hasznosítják.

A mikrohullámú jelátvitel-technológiában is előszeretettel alkalmazzák, mivel egy fémből készült parabolatükör a viszonylag gyenge jelet a fókuszpontba összegyűjtve, a pontosan oda helyezett vevőfej számára megfelelő jelszintet tud produkálni. A parabola antennák működnek oda-vissza is, azaz az irányított jelkisugárzás a fókuszpontban elhelyezett adóval lehetséges. Az igen elterjedt műholdas televíziózás során többnyire az úgynevezett offset parabola antennákat használják, csak vételre alkalmas fejjel. Ezeket az antennákat egy parabola-forgástest aszimmetrikus metszetéből formálják és nagy előnyük a prímfókuszos antennákkal szemben, hogy a vevőfej így nem árnyékolja az antenna hasznos felületét (nem középen van) és többnyire nem a Föld felé áll, elkerülve ezzel az onnan érkező zavaró jeleket. Ráadásul az antennatányér így laposabb és kisebb lehet, ami a légellenállás szempontjából fontos. A prímfókuszos antennák feje középen van, így a felerősítése egyszerűbb, de az antennának a jelforrás felé kell néznie. Nagyobb méretek esetében használják, ahol megoldott a megfelelő rögzítés és a nagy antennaátmérő miatt nem probléma a fej árnyéka a hasznos antennaterületen, ilyenek pl.: katonai légvédelmi radarok és csillagászati kutató rádiótávcsövek.

Parabola és a fizika[szerkesztés | forrásszöveg szerkesztése]

A parabola nagyon sok fizikai jelenségben megtalálható. A legismertebb, hogy állandó gravitációjú térben történő vízszintes vagy ferde hajításnál a test pályája parabola. (Feltéve, hogy a közegellenállás elhanyagolható.) Ezt a jelenséget Galilei fedezte fel a 17. század elején, amikor kísérleteket végzett golyók lejtőn való legördülésével. A pálya parabola alakját később Isaac Newton az általa felállított mozgásegyenletekből levezetve magyarázta. Kiterjedt test esésekor, például műugró ugrásakor a test bonyolult mozgásokat végezhet, foroghat stb. de a test tömegközéppontja parabolikus pályán mozog. A parabola pálya, mint a legtöbb esetben itt is csak közelítés. A légellenállás torzítja a pálya alakját, de ez kis sebességeknél elhanyagolható. Nagyobb sebességeknél ez az elhanyagolás nem megengedett, a ballisztika más hatásokat is figyelembe vesz.

A kéttestproblémánál például egy kisbolygónak a Nap gravitációs tere következtében fellépő mozgása folyamán is felléphet parabola alakú pálya. Az ilyen parabola alakú pálya speciális eset, és ritkán fordul elő a természetben. A hiperbola vagy ellipszis alakú pályák sokkal gyakoribbak. A parabola alakú pálya az előbbiek határesete.

A parabola közelítést a függőhidak kábeleinek alakjánál is használják. A kifeszített kötél pontos alakja ugyan láncgörbe szerinti, de kis belógások esetén jó közelítést ad a parabolával való helyettesítés is.

Forgó edény folyadéktükre

Forgási paraboloidok szintén gyakran előfordulnak a fizikában. A legismertebb példa a parabolikus tükör, mely fényt vagy más elektromágneses sugárzást (például rádióhullámokat) a fókuszpontba gyűjt. A parabolikus tükröt i. e. 3. században Arkhimédész találta fel, aki a legenda szerint parabolikus tükröt szerkesztett, hogy megvédje Siracusa városát a római hajóhad támadása ellen úgy, hogy a nap sugarait a római hajók fedélzetére koncentrálta és így felgyújtotta azokat. A parabolikus tükröt a 17. században távcsövek készítésére is használni kezdték, a nagyobb csillagászati távcsövek ma is tükrös teleszkópok (a lencsének hátrányai vannak a tükörrel szemben). Ma parabolikus antennákat használnak elterjedten a mikrohullámú és mesterséges holdakkal folytatott távközlésben.

Ha egy lapos, henger alakú tálba folyadékot öntünk, majd a tálat a függőleges tengelye körül egyenletes sebességgel forgatjuk, a folyadék a nehézségi erő és a forgás következtében kialakuló centrifugális erő együttes hatására olyan alakot vesz fel, amelynek a felszíne egy szabályos forgási paraboloid. Ezt az egyszerű jelenséget, folyadékként higanyt használva, nagy csillagászati távcsövek főtükreként is felhasználják. A tükröző felület fókusztávolsága a forgás sebességétől függ – a nagy nagyításhoz csak nagyon lapos görbület kell –, és a vízszintes folyadéktükörhöz irányítható segédtükrökkel juttatják el az égbolt megfigyelendő részletének képét. A módszer igen kényes a mechanikus rezgésekre, viszont elkerülhető vele a szilárd tükrök készítésének, csiszolásának, karbantartásának számos nehézsége, valamint a tükrök hőtágulásából eredő képtorzulás problémája.

Lásd még[szerkesztés | forrásszöveg szerkesztése]

Külső hivatkozások[szerkesztés | forrásszöveg szerkesztése]

Commons
A Wikimédia Commons tartalmaz Parabola (görbe) témájú médiaállományokat.

Források[szerkesztés | forrásszöveg szerkesztése]