„Schrödinger-egyenlet” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][nem ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
a Visszaállítottam a lap korábbi változatát 2A02:2F0E:50E:FA00:8473:F6CB:DE47:C602 (vita) szerkesztéséről 1 elektron részecske szerkesztésére
Címke: Visszaállítás
Nincs szerkesztési összefoglaló
Címkék: Visszaállítva Mobilról szerkesztett Mobil web szerkesztés
1. sor: 1. sor:
A [[Kvantummechanika|kvantummechanikában]] egy [[Fizika|fizikai rendszer]] ismerete ekvivalens annak teljes állapotterének ismeretével. Ez általában egy [[végtelen]] dimenziós lineáris tér, nevezetesen a [[Hilbert-tér]], aminek minden eleme a rendszer állapotának megfeleltethető állapotvektor.
A [[Kvantummechanika|kvantummechanikában]] a [[Fizika|fizikai rendszer]] ismerete ekvivalens annak teljes állapotterének ismeretével. Ez általában egy [[végtelen]] dimenziós lineáris tér, nevezetesen a [[Hilbert-tér]], aminecs minden eleme a rendszer állapotának megfeleltethető állapotvektor.
Az állapotok időbeli fejlődése egy a Hilbert-téren ható, "idő paraméterű" operátorral jellemezhető. Amennyiben a rendszer időben eltolható, ez az operátor egy folytonos csoport eleme. Neve: Green-operátor.
Az állapotok időbeli fejlődése egy a Hilbert-téren ható, "idő paraméterű" operátorral jellemezhető. Amennyiben a rendszer időben eltolható, ez az operátor egy folytonos csoport eleme. Neve: Green-operátor.
A csoport infinitezimális generátora, azaz az időfejlődés generátora a Hamilton operátor.
A csoport infinitezimális generátora, azaz az időfejlődés generátora a Hamilton operátor.

A lap 2023. december 13., 21:47-kori változata

A kvantummechanikában a fizikai rendszer ismerete ekvivalens annak teljes állapotterének ismeretével. Ez általában egy végtelen dimenziós lineáris tér, nevezetesen a Hilbert-tér, aminecs minden eleme a rendszer állapotának megfeleltethető állapotvektor. Az állapotok időbeli fejlődése egy a Hilbert-téren ható, "idő paraméterű" operátorral jellemezhető. Amennyiben a rendszer időben eltolható, ez az operátor egy folytonos csoport eleme. Neve: Green-operátor. A csoport infinitezimális generátora, azaz az időfejlődés generátora a Hamilton operátor. A Schrödinger-egyenlet egy állapotegyenlet. Létezik időfüggetlen és időfüggő formája is. Az időfüggetlen formája egy energiasajátérték-egyenlet.

Az időfüggetlen Schrödinger-egyenlet

A kvantummechanikában a fizikai mennyiségek matematikai leírására operátorokat használnak. Kvantumrendszerek mérésekor a mérési eredmény az ahhoz a megfigyelhető mennyiséghez hozzárendelt operátor valamelyik sajátértékével egyezik meg. A kvantummechanikában a fizikai, megfigyelhető mennyiségekhez lineáris, hermitikus operátorokat rendelnek.

Azon klasszikus mechanikai rendszerek esetében, melyek rendelkeznek Hamilton-függvénnyel, a Hamilton-függvény alakja Descartes-koordinátákban

ahol T a rendszer kinetikus energiája és V a rendszer potenciális energiája. A Hamilton-függvény egy klasszikus, tiszta állapot, azaz a rendszer fázisterének pontjai a teljes energiáját adja meg.

A kvantummechanikában a kvantumrendszer energiáját a Schrödinger-féle energiasajátérték-egyenlet határozza meg. A sajátértékegyenletben szereplő operátor (Hamilton-operátor) a rendszer klasszikus fizikai analogonja (ha létezik ilyen) Hamilton-függvényének operátorosításával történik (Ez az úgynevezett kanonikus kvantálás):

a sajátértékegyenlet pedig:

ahol a kvantumállapot, mely a , a rendszer modelljeként szolgáló Hilbert-tér eleme. Az energiasajátértékek megadják a rendszer mérése során előforduló lehetséges energiaértékeket.

A mondottakat általában az egyetlen tömegpont kvantummechanikai leírásával szemléltetik. Ha a tömegpont kényszer nélkül mozog -ban és létezik klasszikus mechanikai Hamilton-függvénye, akkor annak alakja:

ahol a tömegpont tömege, p a tömegpont impulzusa, V pedig a mozgást meghatározó potenciál. Koordinátareprezentációban a kvantummechanikára való áttérés úgy történik, hogy az impulzus komponenseihez és a potenciálhoz -on ható operátorokat rendelnek:

valamint

ahol az identitásoperátor. Mind a potenciál, mind az impulzusoperátorok hermitikusak, így megfigyelhető mennyiségeket határoznak meg. Behelyettesítés után a Schrödinger-egyenlet a következő alakot ölti:

ahol a Laplace-operátor:

Az időfüggő Schrödinger-egyenlet

Az időfüggő Schrödinger-egyenlet egy nemrelativisztikus kvantummechanikai rendszer állapotának az időbeli változását írja le, más szóval ez a nemrelativisztikus kvantummechanikai rendszer mozgásegyenlete. Alakja a következő:

vagy bővebben,[1]

.

A Klein–Gordon-egyenlet

A Klein–Gordon-egyenlet az időfüggő Schrödinger-egyenlet relativisztikus verziója.

Lásd még

További információk