„Euler-függvény” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Syp (vitalap | szerkesztései)
Syp (vitalap | szerkesztései)
Nincs szerkesztési összefoglaló
94. sor: 94. sor:


<center><math>\sum_{n=1}^{x}\varphi(n)=\frac{3}{\pi^2}x^2+O(x\log x)</math></center>
<center><math>\sum_{n=1}^{x}\varphi(n)=\frac{3}{\pi^2}x^2+O(x\log x)</math></center>

==Tóciens számok==
Egy '''totient''' vagy '''tóciens szám''' (a kvóciens mintájára) az Euler-függvény által felvett érték, tehát a φ függvény értékkészletének egy eleme. Olyan ''m'' egész, amihez létezik legalább egy olyan ''n'', amire φ(''n'')&nbsp;=&nbsp;''m''. A tóciens ''m'' szám valenciáján vagy multiplicitásán az előbbi egyenlet megoldásainak számát értjük (tehát hogy a φ függvény hányszor veszi fel az ''m'' értéket).<ref name=Guy144>Guy (2004) p.144</ref> Egy ''[[nontóciens szám]]'' alatt olyan természetes számot értünk, ami nem tóciens szám; az egynél nagyobb páratlan számok mind ilyenek, de rajtuk kívül is végtelen sok nontóciens szám létezik,<ref name=SC230>Sándor & Crstici (2004) p.230</ref> és minden páratlan számnak létezik páros, nontóciens többszöröse.<ref name=Zha1993>{{cite journal | zbl=0772.11001 | last=Zhang | first=Mingzhi | title=On nontotients | journal=[[Journal of Number Theory]] | volume=43 | number=2 | pages=168–172 | year=1993 | issn=0022-314X | doi=10.1006/jnth.1993.1014}}</ref>

Az ''x''-nél kisebb tóciens számok határértéke
:<math>\frac{x}{\log x}\exp\left({ (C+o(1))(\log\log\log x)^2 }\right) \ </math>,
ahol a konstans ''C'' = 0,8178146... .<ref name=Ford1998>{{cite journal | zbl=0914.11053 | last=Ford | first=Kevin | title=The distribution of totients | journal=Ramanujan J. | volume=2 | number=1-2 | pages=67–151 | year=1998 | issn=1382-4090 | doi=10.1007/978-1-4757-4507-8_8}}</ref>

Ha a multiplicitást figyelembe véve számoljuk össze, az ''x''-nél kisebb tóciens számokat megadó képlet:
:<math>\vert\{ n : \phi(n) \le x \}\vert = \frac{\zeta(2)\zeta(3)}{\zeta(6)} \cdot x + R(x) \ </math>,
ahol az ''R'' hibatag nagyságrendje legfeljebb <math>x / (\log x)^k</math> bármilyen pozitív ''k''-ra.<ref name=SMC22>Sándor et al (2006) p.22</ref>

Ismert az is, hogy ''m'' multiplicitása végtelen sokszor haladja meg ''m''<sup>δ</sup>-t, amennyiben δ < 0,55655.<ref name=SMC21>Sándor et al (2006) p.21</ref><ref name=Guy145>Guy (2004) p.145</ref>


== Egyéb ==
== Egyéb ==

A lap 2016. január 17., 17:40-kori változata

Az Euler-féle φ-függvény grafikonja

A -nel jelölt Euler-függvény (vagy Euler-féle fí-függvény) a matematikában a számelmélet, különösen a moduláris számelmélet egyik igen fontos függvénye, egy egész számokon értelmezett egész értékű ún. számelméleti függvény. J. J. Sylvester 1879-ben a totient (kb. „annyiszoros”, magyarul a hányados-kvóciens mintájára esetleg tóciens) függvény nevet adta neki.

Legelemibb meghatározása, hogy egy adott pozitív egész számhoz a nála nem nagyobb relatív prím pozitív egész számok számát adja meg.

Formálisan:

φ(n) = |{ k∈Z | 0<k≤n (n,k) = 1 }|   (ahol n∈N) .

Egy másik, de fentivel teljességgel azonos függvényt adó értelmezésben e függvény a modulo n redukált maradékosztályok számát adja meg (ez gyakorlatilag ugyanaz, mint az előbbi definíció, elvontabban, a maradékaritmetika kifejezéseivel megfogalmazva).

Félig-meddig explicit (a számelmélet alaptételét használó) képlet is adható e függvény kiszámítására, ld. lentebb.

Értékei kis számokra

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
12 18 12 28 8 30 16 20 16 24 12 36 18 24 16 40 12 42 20 24 22 46 16 42 20
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
32 24 52 18 40 24 36 28 58 16 60 30 36 32 48 20 66 32 44 24 70 24 72 36 40
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
36 60 24 78 32 54 40 82 24 64 42 56 40 88 24 72 44 60 46 72 32 96 42 60 40

Legfontosabb tulajdonságai

Multiplikativitás

Talán a legfontosabb tulajdonsága, hogy („gyengén”) multiplikatív, azaz relatív prím számok szorzatán ugyanazt az értéket veszi fel, mint ami a két számon felvett értékének szorzata:

Például:

  • a=7 az prím szám, és
  • b=11 szintén prím, és

(lásd az Értékei kis számokra c. táblázatot)

A két prímszám szorzata: , valamint , ami pontosan .

Kiszámítása

  • Viszonylag könnyű belátni a következőket:
    • Ha prímszám, akkor (mert éppen akkor prím egy p egész szám, ha minden nála kisebb pozitív szám relatív prím hozzá, különben lenne önmagánál kisebb prímosztója!) .
    • Ha prímhatvány, akkor
  • Általánosabb n-re a multiplikativitás és az előző kis tulajdonság alapján, a számelmélet alaptétele felhasználásával számítható ki;
  • Bár talán még elemibb módszer, ha csak a szitaformulát használjuk. Ekkor az így kapott képletből is adódik a multiplikativitás (mindkét módszer persze ugyanazt a képletet eredményezi): ha , , és (páronként) különböző prímek, akkor érvényes
, feltéve hogy

ahol tehát az szám különböző prímtényezőinek száma, pedig valamely prímtényezője. A képlet n=0,1-re nem alkalmazható, de mind az elemi, mind a formális definíció szerint φ(0)=0, φ(1)=1.

Például φ(10) = 10×(1-1/2)×(1-1/5) = 10×(1/2)×(4/5)=4; és valóban az 1,2,3,4,5,6,7,8,9,10 számok közt négy darab 10-hez relatív prím van: 1, 3, 7, és 9.

A Möbius-függvény segítségével ez

alakban írható.

Az osztókra összeadva

Ez bizonyítható az explicit formulából, de így is: vegyük az

törteket. Ezek száma nyilván n. Írjuk mindegyiket egyszerűsített formában! Ekkor ezek a/d alakú törtek lesznek, ahol d osztója n-nek. Adott d-hez azok az a számlálók adódnak, amelyekkel egyszerűsített törtet alkot, azaz, ha . Innen adódik a kívánt azonosság.

Összegfüggvénye

Tóciens számok

Egy totient vagy tóciens szám (a kvóciens mintájára) az Euler-függvény által felvett érték, tehát a φ függvény értékkészletének egy eleme. Olyan m egész, amihez létezik legalább egy olyan n, amire φ(n) = m. A tóciens m szám valenciáján vagy multiplicitásán az előbbi egyenlet megoldásainak számát értjük (tehát hogy a φ függvény hányszor veszi fel az m értéket).[1] Egy nontóciens szám alatt olyan természetes számot értünk, ami nem tóciens szám; az egynél nagyobb páratlan számok mind ilyenek, de rajtuk kívül is végtelen sok nontóciens szám létezik,[2] és minden páratlan számnak létezik páros, nontóciens többszöröse.[3]

Az x-nél kisebb tóciens számok határértéke

,

ahol a konstans C = 0,8178146... .[4]

Ha a multiplicitást figyelembe véve számoljuk össze, az x-nél kisebb tóciens számokat megadó képlet:

,

ahol az R hibatag nagyságrendje legfeljebb bármilyen pozitív k-ra.[5]

Ismert az is, hogy m multiplicitása végtelen sokszor haladja meg mδ-t, amennyiben δ < 0,55655.[6][7]

Egyéb

  • Külföldön néha Euler's totient functionnak, azaz kb. „Euler annyiszoros-függvényének” nevezik, itt a totient szó a latin eredetű totiens (annyiszor(os), ahány) szóból származik, állítólag a quotiens („hányszoros”, azaz hányados, kvóciens) mintájára alkotta meg J. J. Sylvester 1879-ben: „The so-called φ function of any number I shall here and hereafter designate as its τ function and call its Totient.” .
  • Máig megoldatlan a következő probléma, a Carmichael-sejtés: „Az Euler-függvény minden értéket legalább két helyen vesz fel.”
  • Néha a Gamma-függvényt is nevezik Euler-féle gammafüggvénynek.
  • A Mathematica programban az EulerPhi függvénnyel számolható ki az értéke.

Kapcsolódó szócikkek

  1. Guy (2004) p.144
  2. Sándor & Crstici (2004) p.230
  3. Zhang, Mingzhi (1993). „On nontotients”. Journal of Number Theory 43, 168–172. o. DOI:10.1006/jnth.1993.1014. ISSN 0022-314X.  
  4. Ford, Kevin (1998). „The distribution of totients”. Ramanujan J. 2, 67–151. o. DOI:10.1007/978-1-4757-4507-8_8. ISSN 1382-4090.  
  5. Sándor et al (2006) p.22
  6. Sándor et al (2006) p.21
  7. Guy (2004) p.145