Hengerkoordináta-rendszer

A Wikipédiából, a szabad enciklopédiából
Hengerkoordináta rendszer

A hengerkoordináta-rendszer vagy henger-koordinátarendszer egy háromdimenziós koordináta-rendszer, mely egy „P” pont helyét (pozícióját) három adattal határozza meg:

  • ρ távolság egy kiválasztott referencia-tengelyponttól (origó),
    φ radiális távolság a referenciaponttól és
    z a függőleges távolság a választott referenciasíktól.

Ez utóbbi távolság lehet pozitív vagy negatív, attól függően, hogy a referenciasík mely oldalán van a pont. A rendszer origója az a pont, ahol mindhárom koordináta értéke 0. Ez a referenciasík és a tengely metszőpontja.

A hengerkoordináták térbeli alakzatok leírására szolgálnak.

A tengelyt hengeresnek vagy longitudinálisnak nevezik, a polártengelytől történő megkülönböztetésként; ez az az egyenes, mely a referenciasíkon fekszik, az origóban ered és a referencia irányába mutat. A tengelytől mért távolságot radiális távolságnak vagy rádiusznak hívják, míg a szöget bezáró koordinátát szögpozíciónak vagy azimutnak. A rádiusz és az azimut együtt a polárkoordináták, melyek megfelelnek a kétdimenziós polárkoordináta-rendszernek. A harmadik koordináta a magasság (ha a referenciasík vízszintes), és longitudinális pozíciónak vagy axiális poziciónak is nevezik.[1] [2].

A hengeres koordináta-rendszer akkor használatos és hasznos, ha egy tárgynak vagy jelenségnek van forgási szimmetriája a longitudinális tengelyre nézve, mint például a vízfolyás egy egyenes csőben vagy a hőeloszlás egy fémhengerben.

Hengeres polárkoordinátának[3] is hívják és poláros henger-koordinátának is.[4] Használják csillagok pozicióinak meghatározására is egy galaxisban.[5]

Meghatározás[szerkesztés | forrásszöveg szerkesztése]

Egy „P” pont három koordinátájának (ρ, φ, z) definíciója:

  • A radiális távolság, ρ, „P” pont euklideszi távolsága a „z” tengelytől,
  • Az azimut, φ az a szög, mely a választott sík referenciapontja és a „P” pont síkra vetített vonala közt záródik,
  • A „z” magasság a „P” pont merőleges távolsága a választott síktól.

Konvenciók[szerkesztés | forrásszöveg szerkesztése]

A hengerkoordináta jelölései nem egységesek. Az ISO31-11 szabvány a (ρ, φ, z) jelöléseket ajánlja, ahol ρ a radiális koordináta, φ az azimut és z'’ a magasság. A rádiuszt gyakran „r”-rel jelölik, az azimutot „θ”-val és a magasságot „h”-val (ha henger tengelye vízszintes) vagy „x”-szel.

Hengerkoordináta-felületetek

Koordináta-konverziók[szerkesztés | forrásszöveg szerkesztése]

A hengerkoordináta-rendszer csak egy a sok koordináta-rendszer között. A fejezetben néhány ismertebb koordináta-rendszer és a hengerkoordináta-rendszer kapcsolatát mutatjuk be.

Descartes-féle koordináta-rendszer[szerkesztés | forrásszöveg szerkesztése]

A hengerkoordináta- és a Descartes-féle koordináta-rendszerek közötti konverzió esetén kézenfekvő, ha a hengerkoordináta rendszer referencia síkja a Descartes-féle koordináta-rendszer x-y síkja (z=0), és a henger tengelye a descartesi z tengelye. Így, mind a két rendszer tengelye azonos, és a megfeleltetés a hengerkoordináták (ρ,φ) és a Descartes-féle koordinátákra (x,y) azonos a polárkoordinátákkal, azaz:

x = \rho \cos \varphi
y = \rho \sin \varphi

az egyik irányban, és

\rho = \sqrt{x^{2}+y^{2}}
\varphi = 
  \begin{cases}
   0 & \mbox{if } x = 0 \mbox{ and } y = 0\\
    \arcsin(\frac{y}{\rho}) & \mbox{if } x \geq 0 \\
    -\arcsin(\frac{y}{\rho}) + \pi & \mbox{if } x < 0\\
  \end{cases}
.
Hengerkoordináta felelületek; a komponensek: “p”(zöld, a “φ” (piros), “z” (kék), a három színes felület keresztezésénél van az a pont, melyet a hengerkoordináták meghatároznak

Az arcsin függvény a sinus függvény inverze, az azimut φ tartománya [−90°,+270°]. Továbbiak a polárkoordináta cikkben olvashatók. A korszerű programozási nyelvekben van olyan lehetőség, ahol az azimut φ értéke pontosan kiszámolható, a fent bemutatott analízis nélkül. Például ezt a funkciót a C programozási nyelvben atan2(y,x)-nak hívják, a Lispben pedig atan(y,x).

Gömbkoordináta-rendszer[szerkesztés | forrásszöveg szerkesztése]

A gömbkoordináta-rendszer (rádiusz r, inklináció θ, azimut φ) átkonvertálható hengerkoordinátákba:

θ emelkedési szög:     θ is inklináció:
 \rho = r \cos \theta \,      \rho = r \sin \theta \,
 \varphi  = \varphi \,      \varphi  = \varphi \,
 z  = r \sin \theta \,      z  = r \cos \theta \,
θ emelkedési szög:     θ is inklináció:
r=\sqrt{\rho^2+z^2}     r=\sqrt{\rho^2+z^2}
{\theta}=\operatorname{arcsin}(z/r)     {\theta}=\operatorname{arccos}(z/r)
{\varphi}=\varphi \quad     {\varphi}=\varphi \quad

Hengerkoordináta-harmonikusok[szerkesztés | forrásszöveg szerkesztése]

A Laplace-egyenlet hengerszimmetrikus megoldásait hengerkoordináta-harmonikusoknak hívják.

Irodalom[szerkesztés | forrásszöveg szerkesztése]

Források[szerkesztés | forrásszöveg szerkesztése]

  1. C. Krafft, A. S. Volokitin (2002), Resonant electron beam interaction with several lower hybrid waves. Physics of Plasmas, volume 9, issue 6, 2786–2797. DOI:10.1063/1.1465420 "[...]in cylindrical coordinates (r,θ,z) [...] and Z=vbzt is the longitudinal position[...]".
  2. Alexander Groisman and Victor Steinberg (1997), Solitary Vortex Pairs in Viscoelastic Couette Flow. Physical Review Letters, volume 78, number 8, 1460–1463. DOI: 10.1103/PhysRevLett.78.1460 "[...]where r, θ, and z are cylindrical coordinates [...] as a function of axial position[...]"
  3. J. E. Szymanski, Basic mathematics for electronic engineers: models and applications, Volume 16 of Tutorial guides in electronic engineering, Publisher Taylor & Francis, 1989, ISBN 0278000681, 9780278000681 (page 170)
  4. Robert H. Nunn, Intermediate fluid mechanics, Publisher Taylor & Francis, 1989, ISBN 0891166475, 9780891166474, 343 pages (page 3)
  5. Linda Siobhan Sparke, John Sill Gallagher, Galaxies in the universe: an introduction, Edition 2, Publisher Cambridge University Press, 2007, ISBN 0521855934, 9780521855938, 431 pages (page 37)

Lásd még[szerkesztés | forrásszöveg szerkesztése]