„Számtani és mértani közép közötti egyenlőtlenség” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[nem ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Nincs szerkesztési összefoglaló
szigorú monotonsághoz nem elég a nagyobbegyenlőt bizonyítani
133. sor: 133. sor:
Bizonyítás: <math>a^4b^3c=(a^{32}b^{24}c^8)^{1/8}=(a^8a^8a^8a^8b^8b^8b^8c^8)^{1/8}\le\frac{4a^8+3b^8+c^8}8</math>. A változók ciklikus permutálásával kapott három egyenlőtlenséget összeadva adódik az igazolandó. Leolvashatjuk az egyenlőség esetét is: a=b=c.
Bizonyítás: <math>a^4b^3c=(a^{32}b^{24}c^8)^{1/8}=(a^8a^8a^8a^8b^8b^8b^8c^8)^{1/8}\le\frac{4a^8+3b^8+c^8}8</math>. A változók ciklikus permutálásával kapott három egyenlőtlenséget összeadva adódik az igazolandó. Leolvashatjuk az egyenlőség esetét is: a=b=c.


=== Az <math>\sqrt[n]{n}</math> sorozat hatarértéke===
=== Az <math>\sqrt[n]{n}</math> sorozat határértéke===
Megmutatjuk, hogy <math>\lim_{n\to\infty} \sqrt[n]{n}=1</math>. Valóban, hiszen a számtani és mértani közepek közötti egyenlőtlenség alapján
Megmutatjuk, hogy <math>\lim_{n\to\infty} \sqrt[n]{n}=1</math>. Valóban, hiszen a számtani és mértani közepek közötti egyenlőtlenség alapján
<center><math>1\le\sqrt[n]{n}=\sqrt[n]{\sqrt{n}\sqrt{n}*1*\ldots*1} \le\frac{2\sqrt{n}+ n-2}{n}=1+\frac{2}{\sqrt{n}}-\frac{2}{n}\to 1.</math></center>
<center><math>1\le\sqrt[n]{n}=\sqrt[n]{\sqrt{n}\sqrt{n}*1*\ldots*1} \le\frac{2\sqrt{n}+ n-2}{n}=1+\frac{2}{\sqrt{n}}-\frac{2}{n}\to 1.</math></center>


=== Az <math>(1+ \frac{1}{n})^n</math> sorozat szigorúan monoton növekedő===
=== Az <math>(1+ \frac{1}{n})^n</math> sorozat szigorúan monoton növekedő===
Azt kell igazolni, hogy <math>(1+ \frac{1}{n+1})^{n+1} \ge (1+ \frac{1}{n})^{n}</math>. A számtani és mértani közepek közötti egyenlőtlenség alapján
Azt kell igazolni, hogy <math>(1+ \frac{1}{n+1})^{n+1} > (1+ \frac{1}{n})^{n}</math>. A számtani és mértani közepek közötti egyenlőtlenség alapján
<center><math>
<center><math>
\sqrt[n+1]{(1+\frac{1}{n})^{n}*1} \le \frac{n(1+\frac{1}{n})+1}{n+1}=1+\frac{1}{n+1}.
\sqrt[n+1]{(1+\frac{1}{n})^{n}*1} \le \frac{n(1+\frac{1}{n})+1}{n+1}=1+\frac{1}{n+1}.
</math></center>
</math></center>
Ugyanígy igazolható, hogy <math>(1+ \frac{x}{n})^n</math> is szigurúan monoton növekedő, ahol <math>x</math> tetszőleges valós szám.
Egyenlőség pedig nem állhat fenn. Hasonlóan igazolható, hogy <math>(1+ \frac{x}{n})^n</math> is szigorúan monoton növekedő, ahol <math>x</math> tetszőleges valós szám.


== A tétel súlyozott változata ==
== A tétel súlyozott változata ==

A lap 2013. október 11., 16:01-kori változata

A számtani és mértani közép közötti egyenlőtlenség egy matematikai tétel, amely szerint nemnegatív valós számok számtani középértéke nem lehet kisebb, mint a számok mértani középértéke; egyenlőség is csak akkor állhat fenn, ha a szóban forgó számok megegyeznek.

A tétel megfogalmazása

Bármely nemnegatív valós számok esetén

és egyenlőség csak abban az esetben áll fenn, ha .

A tétel bizonyításai

Az n = 2 eset bizonyításai

Algebrai bizonyítás

Ekvivalens átalakításokkal







ami mindig teljesül.

Geometriai bizonyítás

Az egymás mögé illesztett és hosszúságú szakaszok, mint átmérő fölé, rajzoljunk félkörívet! Ennek sugara a két szám számtani közepe lesz. A két szám mértani közepének megfelel a szakaszok érintkezési pontjába állított és a körívig húzott merőlegesnek a hossza. Az ábráról leolvasható, hogy az utóbbi csak abban az esetben éri el a sugár hosszát, ha .

Bizonyítások teljes indukcióval

1. bizonyítás

a.) A tételt esetre már bizonyítottuk.

b.) Igazoljuk, hogy ha -re igaz az állítás, akkor -re is igaz. Osszuk ugyanis fel a tetszőlegesen rögzített számot két darab -es csoportra; alkalmazzuk ezekre külön-külön az -re vonatkozó indukciós feltevést; majd második lépésben alkalmazzuk az esetre már bizonyított tételt:

Ezzel bizonyítottuk az állítást minden olyan esetre, amikor a tagok száma 2-hatvány ().

c.) Amennyiben nem 2-hatvány (), akkor az nemnegatív valós számokhoz vegyük hozzá az elemeket, és alkalmazzuk az így kapott számokra a már bizonyított állítást:

Ekvivalens átalakításokkal:





amit bizonyítani kellett.

d.) Végül igazoljuk a tétel egyenlőségre vonatkozó részét.
esetén az egyenlőség nyilvánvalóan teljesül, hiszen ekkor
Tegyük fel most, hogy például  ! Felhasználva, hogy ebben az esetben  :

tehát egyenlőség nem állhat fenn.

2. bizonyítás

a.) A tételt esetre már bizonyítottuk.

b.) Igazoljuk, hogy ha -re igaz az állítás, akkor -re is igaz, a már látott módon.

c.) Egyfajta fordított irányú indukciót alkalmazva igazoljuk, hogy ha -re igaz az állítás, akkor -re is teljesül, és így minden természetes számra fennáll. Az nemnegatív valós számokhoz vegyük ugyanis hozzá -dik elemként a számok számtani középértékét, az számot. Az indukciós feltevésből kiindulva, ekkor, ekvivalens átalakításokkal:







,

amit bizonyítani kellett.

d.) Végül igazoljuk a tétel egyenlőségre vonatkozó részét, a már látott módon.

3. bizonyítás

a.) A tételt esetre már bizonyítottuk.

b.) Igazoljuk, hogy ha -re igaz az állítás, akkor -re is igaz. Legyen ugyanis és , ekkor az indukciós feltevés miatt

Mivel , elegendő megmutatni, hogy

Ekvivalens átalakításokkal:









,

ami mindig teljesül, mert esetén a bal oldalon két pozitív, esetén pedig két negatív szám szorzata szerepel.

c.) Végül igazoljuk a tétel egyenlőségre vonatkozó részét, a már látott módon.

4. bizonyítás

a.) A tételt esetre már bizonyítottuk.

b.) Igazoljuk, hogy ha -re igaz az állítás, akkor -re is igaz. Indukcióval feltehetjük, hogy -re igaz az állítás és szám van adva: és . Jelöljük -val az számok számtani közepét. Az indukciós hipotézis miatt tudjuk, hogy . Be kell látnunk, hogy

teljesül minden számra. Az indukció miatt már tudjuk, hogy , ezért azt kell belátni, hogy azaz

teljesül. polinom, ami 0-ban pozitív, -ban nulla, végtelenben pedig végtelenhez tart. Így van minimuma, ahol deriváltja nulla. Kiszámolva:

ahonnan .

Richard Rado bizonyítása

Richard Rado indukciós bizonyítása erősebb állítást igazol. Tegyük fel, hogy számunk van, ezek számtani és mértani közepe és , az első szám számtani illetve mértani közepe pedig és . Ekkor

Ez elég, hiszen ha , akkor a képlet szerint . A képlet igazolásához -nel osztva, 0-ra redukálva és bevezetve az

új változót, a következő adódik:

Ezt kell tehát -ra igazolni. Ezt -re való indukcióval bizonyítjuk. Az eset igaz. Ha pedig -re igaz, akkor -re

Pólya György bizonyítása

Pólya György bizonyítása, ami az analízis mély fogalmait használja, az exponenciális függvény következő tulajdonságára épül: ha valós, egyenlőség csak akkor áll, ha . Tegyük fel tehát, hogy adottak az pozitív számok, számtani közepük . Írjuk fel az említett egyenlőtlenséget az () számokra:

Összeszorozva ezeket azt kapjuk, hogy

A bal oldal miatt így alakítható:

és ezzel azt kaptuk, hogy , tehát készen vagyunk. Egyenlőség csak akkor áll, ha , azaz a számok egyenlőek. Ezt a bizonyítást Pólya György álmában találta.

Riesz Frigyes bizonyítása

Riesz Frigyes bizonyítása a következő: esetén az egyenlőség nyilvánvalóan teljesül, hiszen ekkor . Amennyiben a számok nem egyenlőek, feltehető, hogy létezik közöttük legkisebb és legnagyobb elem, például . Helyettesítsük ebben az esetben helyébe az , helyébe pedig az értéket. Ezzel a helyettesítéssel a számtani középérték nem változott, hiszen

,

a mértani középérték viszont

értékkel nőtt; továbbá a számok között most már az elem eggyel többször szerepel. Ezzel az eljárással véges sok lépésben valamennyi elemet -re cserélhetjük, miközben a számtani közép változatlan marad, a mértani közép pedig fokozatosan nő. Az eljárás végén elérjük a bizonyítás elején már tárgyalt egyenlőséget, és ezzel egyben a tételt is igazoltuk.

A tétel fontosabb alkalmazásai

Pozitív valós szám és reciprokának összege nem kisebb 2-nél

A tétel segítégégvel bebizonyítható, hogy ha , akkor . Ugyanis egyenlőtlenség a tétel miatt igaz, hiszen a bal oldalon a és számtani, míg a jobb oldalon a mértani közepük van. A jobb oldalon a gyök alatt 1 van, és mivel , ezért , és 2-vel szorozva . QED

A rendezési tétel helyettesítése több feladat megoldásában

Ebben a példában az egyenlőtlenség a rendezési tételt helyettesíti:

Igazoljuk, hogy (a, b, c poz. valós számok). Bizonyítás: . A változók ciklikus permutálásával kapott három egyenlőtlenséget összeadva adódik az igazolandó. Leolvashatjuk az egyenlőség esetét is: a=b=c.

Az sorozat határértéke

Megmutatjuk, hogy . Valóban, hiszen a számtani és mértani közepek közötti egyenlőtlenség alapján

Az sorozat szigorúan monoton növekedő

Azt kell igazolni, hogy . A számtani és mértani közepek közötti egyenlőtlenség alapján

Egyenlőség pedig nem állhat fenn. Hasonlóan igazolható, hogy is szigorúan monoton növekedő, ahol tetszőleges valós szám.

A tétel súlyozott változata

A tétel súlyozott változata a következő. Ha nemnegatív valós számok, pozitív valós számok, amikre teljesül, akkor

Egyenlőség csak akkor áll fenn, ha . Ennek speciális esete az eredeti tétel.

A tétel általánosításai

A tétellel kapcsolatos (matematika)történeti érdekességek

Források