Hőmérsékleti sugárzás

Hőmérsékleti sugárzásnak nevezzük az anyag töltött részecskéinek hőmozgása által kibocsátott elektromágneses sugárzást. A testek minden T > 0 K hőmérsékleten elektromágneses hullámokat bocsátanak ki, a környezet hőmérsékletétől függetlenül. A sugárzás kibocsátásakor (emisszió) lényegében a test belső energiája átalakul elektromágneses energiává, a sugárzás elnyelésekor (abszorpció) pedig az elektromágneses energia alakul belső energiává.
A hőmérsékleti sugárzás emissziójával és abszorpciójával valósul meg a hőátadás egy lehetséges formája, a hősugárzás. Bruttó hőátadás akkor történik, amikor egy melegebb test által kibocsátott elektromágneses sugárzást egy hidegebb test elnyel. A sugárzásra vonatkozó törvényekbe beleértendő a látható sugárzás (fénysugárzás) is.

A hőmérsékleti sugárzás néhány kvalitatív tulajdonsága[szerkesztés]
- Az energiakibocsátás széles hullámhossztartományban történik (0< λ< )
- A sugárzás intenzitása és spektrális (hullámhossz vagy frekvencia szerinti) energiaeloszlása egy adott testnél csak a hőmérséklettől függ
- A kibocsátás (emisszió) és az elnyelés (abszorpció) folyamata egymástól független. A testek akkor is sugároznak, ha a környezet miatt nem nyelnek el energiát.
Termodinamikai egyensúly esetén az emittált és az abszorbeált energia megegyezik, ellenkező esetben a sugárzó test melegszik vagy hűl a környezetéhez képest. A két folyamat függetlensége azt jelenti, hogy a sugárzó test nem azt az energiát bocsátja ki, amit elnyelt.
A hőmérsékleti sugárzás klasszikus törvényei[szerkesztés]
Kirchhoff sugárzási törvénye[szerkesztés]
Gustav Robert Kirchhoff német fizikus elméleti úton levezetett sugárzási törvénye szerint (1859) bármely testnél egy adott hullámhosszon és hőmérsékleten a spektrális emisszióképesség és az abszorpcióképesség hányadosa állandó:
Ha egy test adott hullámhosszon és hőmérsékleten sugároz, akkor ezen a hullámhosszon és hőmérsékleten abszorbeál is. Fordítva ez nem teljesül; ha egy test adott hullámhosszon és hőmérsékleten sugarakat nyel el, akkor még nem biztos, hogy azon a hőmérsékleten ki is bocsátja azokat.
Stefan–Boltzmann-törvény[szerkesztés]
A Stefan–Boltzmann-törvény (Josef Stefan, osztrák fizikus (1835–1893), Ludwig Boltzmann (1844–1906) osztrák fizikus és filozófus) szerint az abszolút fekete test sugársűrűsége egyenesen arányos a termodinamikai (abszolút) hőmérséklet negyedik hatványával:
,
ahol a Stefan–Boltzmann-állandó.
Wien-féle eltolódási törvény (Wien I. törvénye)[szerkesztés]
Wilhelm Wien (német fizikus, 1864 – 1928, Nobel–díj: 1911) az abszolút fekete test T hőmérsékletéhez tartozó spektrális emisszióképesség görbéjének maximumhelyére vonatkozóan állapított meg törvényt (1893). A törvény szerint az abszolút fekete test emisszióképességének hullámhossz szerinti maximumhelye (λmax) fordítva arányos a termodinamikai hőmérséklettel:
ahol
T a fekete test abszolút hőmérséklete, b a Wien–féle eltolódási állandó
Az eltolódási törvény kvalitatív igazolása a felhevített testek (pl. vasdarab) színének változása. Alacsony hőmérsékleten a test vörösen izzik. Tovább hevítve világos vörös, sárgás-fehéres, végül kellően nagy hőmérsékleten kékes lesz. A jelenség azzal magyarázható, hogy a spektrális emisszióképesség maximuma a növekvő hőmérséklettel a csökkenő hullámhossz felé, vagyis a vörös tartományból az ibolya felé tolódik. A csillagok színe és ebből adódó típusnevük (vörös óriás, fehér törpe stb.) is az eltolódási törvénnyel magyarázható.
Wien II. sugárzási törvénye[szerkesztés]
Kevésbé ismert Wien második törvénye, amely a sugársűrűség hőmérsékletfüggését adja meg. Eszerint a maximális intenzitás értéke a hőmérséklet ötödik hatványával arányos, vagyis:
Rayleigh–Jeans-törvény[szerkesztés]
John Rayleigh, (John William Strutt III. Lord Rayleigh, angol fizikus (1842–1919); Nobel-díj: 1904) és James Jeans (angol fizikus és csillagász (1877–1946) 1900-ban a spektrális emisszióképességet a klasszikus fizika alapján kísérelte meg elméleti úton levezetni.
A Rayleigh–Jeans-függvény nagy hullámhosszokon (vagyis kis frekvenciákon) megfelel a megfigyeléseknek, de rövidhullámokon a végtelenhez tart; ez az úgynevezett ultraibolya katasztrófa.[1][2]
A problémát a klasszikus fizika alapján nem lehetett megoldani.
Planck hipotézise és sugárzási törvénye[szerkesztés]
A hőmérsékleti sugárzás problémáját Max Planck (német fizikus (1858–1947), Nobel-díj: 1918) oldotta meg. Planck abból a feltevésből indult ki, hogy az oszcillátorokra növekvő frekvencia esetén nem juthat kT átlagos energia, hanem annál kisebb. Plancknak a hőmérsékleti sugárzás problémáját úgy sikerült megoldania, hogy a klasszikus fizikától merőben eltérő új hipotézissel élt: az oszcillátorok energiája nem folytonos, hanem
energia-kvantumokból tevődik össze (a h együtthatót Planck-állandónak nevezik). Ezt nevezik Planck-hipotézisnek, melyet Planck először 1900. december 14-én jelentett be a porosz akadémia ülésén. Ekkor merült fel először a sugárzás korpuszkuláris jellege, innen számítjuk a kvantumfizika kezdetét.
A Planck sugárzási törvény több formája használatos.
A frekvencia függvényében ,[3][4]
Planck törvénye felírható a spektrális energia sűrűségfüggvényeként is.[3][5]
A hullámhossz függvényében:[3][4]
Planck törvényéből könnyen levezethető a Wien-féle eltolódási törvény és a klasszikus Stefan–Boltzmann-törvény. Kis frekvenciáknál a Rayleigh–Jeans-formula adódik, magas frekvenciáknál és alacsony hőmérsékleten a Wien-féle sugárzási törvény.
A Planck-féle sugárzási formula ily módon az összes sugárzáselméleti összefüggést tartalmazza és így a sugárzáselmélet központi törvényévé vált. Igazi jelentőségét mégsem ez adja, hanem a kimunkálásakor felvetett hipotézis újszerűsége, mely a kvantumfizika kezdetét jelentette.
Jegyzetek[szerkesztés]
- ↑ Astronomy: A Physical Perspective, Mark L. Kutner pp. 15
- ↑ Radiative Processes in Astrophysics, Rybicki and Lightman pp. 20–28
- ↑ a b c Planck 1914, p. 6 and p. 168
- ↑ a b (Rybicki & Lightman 1979, p. 22)
- ↑ Brehm, J.J. and Mullin, W.J., "Introduction to the Structure of Matter: A Course in Modern Physics," (Wiley, New York, 1989) ISBN 047160531X.
Források[szerkesztés]
- Pintér Ferenc: Általános fizika, Atomhéjfizika. (hely nélkül): Dialóg Campus Kiadó. 2003. 347–366. o.
További információk[szerkesztés]
- https://web.archive.org/web/20110907032421/http://www.uni-miskolc.hu/~www_fiz/fiz2b/node37.html
- https://web.archive.org/web/20110907024250/http://www.uni-miskolc.hu/~www_fiz/modern1/04.htm
- https://web.archive.org/web/20160305141421/http://people.bolyai.elte.hu/~hagymasi/homersug.pdf
- http://nasa.web.elte.hu/NewClearGlossy/Java/LON/blackbody/index.html
- http://phet.colorado.edu/hu/simulation/blackbody-spectrum
- https://web.archive.org/web/20100310164618/http://www.roik.bmf.hu/fizika/feketetest/index.html