Ramsey-tétel
Ramsey tétele, melynek névadója Frank P. Ramsey brit matematikus-filozófus-közgazdász, a kombinatorika, de tulajdonképpen a matematika egészének fontos tétele.
A tétel véges formája
[szerkesztés]- Ha pozitív egész számok, akkor van olyan (legkisebb) pozitív egész szám, hogy igaz a következő állítás: ha tetszőleges S halmazra és S összes r elemű részhalmazának halmazát s részre bontjuk (s színnel színezzük) akkor valamelyik i-re igaz, hogy van az alaphalmaznak olyan -elemű részhalmaza, aminek összes r elemű részhalmaza az i-edik osztályba esik (i-edik színt kapja).
Az r=1 eset egyszerűen a skatulyaelv: ha egy -elemű halmazt kiszínezzük az színekkel, akkor valamelyik i-re van legalább számú pont ami az i színt kapja.
Minden r-re nyilvánvaló az s=1 eset: .
Az r=2, s=2 eset
[szerkesztés]E speciális eset a tétel legismertebb formája: ha a és b pozitív egész számok, akkor van olyan (legkisebb) R(a,b) pozitív egész szám, hogy ha egy R(a,b) pontból álló teljes gráf éleit kékkel és zölddel színezzük, akkor van teljes a-as kék színben vagy teljes b-es zöld színben.
Már Erdős és Szekeres a következő korlátot nyerte R(a,b) értékére:
Ez -re való indukcióval igazolható. Nyilvánvalóan teljesül és . Ha belátjuk, hogy teljesül
akkor a binomiális együtthatókra vonatkozó
azonosság miatt készen vagyunk.
Színezzük tehát egy teljes R(a-1,b)+R(a,b-1)-gráf éleit kék és zöld színnel. Legyen p egy csúcs. Legyen a p-ből kiinduló kék színű élek másik végpontjainak halmaza A, a zöldeké B. Mivel , vagy vagy teljesül. Az első esetben vagy A-ban van egy teljes, zöld színű b-es gráf (amivel készen vagyunk), vagy van egy teljes kék színű a-1-es gráf (ami p-vel egy teljes kék a-ast alkot). A második esetben vagy van egy teljes kék a-as gráf (amivel készen vagyunk) vagy van egy teljes zöld b-1-es (ami p-vel egy teljes zöld b-est alkot).
Erre lényeges javítás csak ötven évvel később született:
- Rödl (1986): alkalmas c, d>0 konstansokkal
- Thomason (1987):
- Conlon (2009):
Ramsey-számok
[szerkesztés]A Ramsey-tételben (és több színre való kiterjesztéseiben) szereplő R(a,b) számokat Ramsey-számoknak nevezik. A tétel bizonyításából adódik egy felső korlát R(a,b) számokra, alsó korlátok pedig máshonnan. Azonban a legjobb alsó korlátok és a legjobb felső korlátok között elég nagy űr tátong. Következésképpen, nagyon kevés a és b számra ismerjük R(a,b) pontos értékét. Az L alsó korlát kiszámítása R(a,b)-re általában a KL‒1 olyan kék-piros színezéséből áll, ami nem tartalmaz kék Ka részgráfot, sem piros Kb részgráfot. Egy Kn gráf összes lehetséges kiszínezésének a vizsgálata hamar számításigényessé válik, ahogy n értéke növekszik; a színezések száma exponenciálisnál gyorsabban növekszik.
Az R(a,b) értékei 11-nél kisebb a és b-kre megtalálhatók a lenti táblázatban. Ahol a pontos érték ismeretlen, az eddigi legjobb alsó és felső korlátokat adjuk meg. R(a,b) értékét, ahol akár a vagy b 3-nál kisebb, megadják az R(1,b) = 1 és R(2,b) = b képletek minden b-re. A Ramsey-számok kutatását Stanisław Radziszowski tekintette át, aki Brendan McKay-jel együtt kiszámította az R(4,5) pontos értékét.
a,b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | |||||||||
2 | 1 | 2 | ||||||||
3 | 1 | 3 | 6 | |||||||
4 | 1 | 4 | 9 | 18 | ||||||
5 | 1 | 5 | 14 | 25 | 43–49 | |||||
6 | 1 | 6 | 18 | 36–41 | 58–87 | 102–165 | ||||
7 | 1 | 7 | 23 | 49–61 | 80–143 | 113–298 | 205–540 | |||
8 | 1 | 8 | 28 | 56–84 | 101–216 | 127–495 | 216–1031 | 282–1870 | ||
9 | 1 | 9 | 36 | 73–115 | 125–316 | 169–780 | 233–1713 | 317–3583 | 565–6588 | |
10 | 1 | 10 | 40–43 | 92–149 | 143–442 | 179–1171 | 289–2826 | ≤ 6090 | 580–12677 | 798–23556 |
Triviális, hogy a táblázat szimmetrikus az átlóra nézve, ezért az áttekinthetőség kedvéért az átló fölötti elemeket elhagytuk.
A táblázat kivonat Stanisław Radziszowski részletesebb táblázatából [1].
Az R(a,a) átlós Ramsey-számok meghatározása a kombinatorika egyik legnehezebb problémája. Ismert, hogy R(3,3)=6 és R(4,4)=18. De R(5,5) pontos értéke már ismeretlen, csak azt tudjuk róla, hogy 43 (Geoffrey Exoo) és 49 (Brendan McKay és Stanisław Radziszowski) között található; hacsak nem találunk az összes eset szisztematikus végigvizsgálásánál lényegesen hatékonyabb eljárást, valószínű, hogy az R(6,6) pontos értéke örökre ismeretlen marad számunkra.
- „Képzeljük el, hogy az embernél sokkal hatalmasabb idegen faj landol a Földön, és az R(5, 5) értékét követelik, vagy elpusztítják a bolygót. Ebben az esetben hadra kéne fognunk minden számítógépet és matematikust, hogy megtaláljuk az értéket. De tegyük fel, hogy ehelyett az R(6, 6) értékére kíváncsiak; ebben az esetben minden erőnkkel meg kéne próbálnunk legyőzni őket.” – Erdős Pál
Nagy n értékekre a bizonyításból
adódik. Erdős a valószínűségszámítási módszer egyik legelső alkalmazásával igazolta, hogy
Egy hosszú ideig érintetlen Erdős-kérdés volt, hogy lehet-e -re a triviális -nél lényegesen jobb konstruktív alsó becslést adni. Erre először Nagy Zsigmond egy -ös, majd Frankl Péter és Wilson egy -es konstrukciót adott.
Erdős egyik nevezetes sejtése, hogy van olyan c szám, hogy minden -ra elég nagy n esetén
teljesül.
-re a következő ismert:
alkalmas pozitív konstansokra, a felső korlát Ajtai Miklóstól, Komlós Jánostól és Szemerédi Endrétől, az alsó Jeon Han Kimtől ered (1995, ezért az eredményéért 1997-ben Fulkerson-díjat kapott).
R2(3,3,…,3) esete
[szerkesztés]Szavakban ez tehát azt mondja ki, hogy ha egy (r darab 3) szögpontú teljes gráf éleit r színnel színezzük, akkor van egyszínű háromszög. Bebizonyítjuk az és általában az becslést (az első három esetben egyenlőség van). Ehhez definiáljuk az f függvényt az , rekurzióval. r-re való indukcióval bebizonyítjuk, hogy ha éleit r színnel színezzük, van egyszínű háromszög. Ez r=1-re nyilván igaz. Tegyük fel, hogy tudjuk az állítást r-re és adott éleinek egy r+1 színnel való színezése. Legyen p a gráf egy csúcsa, sorra azon további pontok halmaza, amelyek p-be az első, második, …, r+1-edik színben vannak bekötve. Nyilván , ezért van olyan , hogy . Ha pontjai között szerepelne az i-edik szín, akkor van az i színben háromszög. Ha nem, párjait r színnel színezzük, az indukció miatt van tehát egyszínű háromszög.
Végül jegyezzük meg, hogy indukcióval adódik
A tétel érdekes alkalmazása Issai Schur tétele.
r=2, tetszőleges s esete
[szerkesztés]Teljes indukcióval igazolható az
egyenlőtlenség. Ebből viszont az
korlátot kaphatjuk indukcióval.
A tétel végtelen formája
[szerkesztés]- Ha s, r pozitív egész számok és f a természetes számok összes r elemű részhalmazainak halmazát s részre bontja (s színnel színezi), akkor van olyan végtelen részhalmaz, aminek minden részhalmaza ugyanabba a részbe esik (ugyanazt a színt kapja).
Ramsey-típusú tételek
[szerkesztés]Tétel
[szerkesztés]Minden 6 pontú gráfban van egy teljes 3-as vagy egy teljes üres 3-as, azaz van 3 olyan pont, hogy bármely 2 között fut él, vagy van 3 olyan pont, hogy közöttük nem fut él. A tétel koktélparti-tétel néven is ismeretes, mivel egy közérthető megfogalmazása szerint ha hat vendéget hívunk meg egy partira, akkor vagy vannak hárman, akik kölcsönösen ismerik egymást, vagy hárman, akik kölcsönösen nem.
Bizonyítás
[szerkesztés]Válasszunk ki egy tetszőleges pontot, -et. Ezen kívül még 5 pontunk van, ezekből vagy van 3 olyan pont, amibe vezet él -ből, vagy van 3 olyan pont, amibe nem vezet él -ből. Az első esetben legyenek szomszédai , , . Ha ezek között fut él, például , akkor , , egy teljes 3-ast ad, azonban ha nem fut köztük él, akkor , , egy teljes üres hármas. A második esetben is ugyanígy következik az állítás.
Tétel (Ramsey)
[szerkesztés]Adott k, l pozitív egészekhez létezik egy olyan legkisebb szám, hogy esetén az pontú teljes gráf, éleit két színnel kiszínezve van a gráfban egy első színű vagy egy második színű .
Bizonyítás
[szerkesztés]A következő tétel bizonyításával együtt látjuk be ennek a tételnek a bizonyítását is.
Tétel (Erdős-Szekeres)
[szerkesztés]
Bizonyítás
[szerkesztés]Bizonyítsunk indukcióval. Nyilvánvaló, hogy létezik és , és világos, hogy és . Tegyük fel, hogy létezik minden , ahol vagy és vagy és . Emellett indirekt tegyünk fel, hogy , és éleit ki lehet színezni két színnel úgy, hogy a gráfban nincs sem első színű (kék) , sem második színű (piros) . Válasszuk ki egy tetszőleges pontját a gráfnak, -et. Legyenek -ből kiinduló kék élek végpontjai , a pirosaké pedig . Ha nagyobb lenne -nél, akkor a pontok között a feltevés miatt volna vagy egy piros , vagy egy kék , és az utóbbi esetben ehhez hozzávéve -et kék -t kapnánk. Tehát a feltevéseinkből következik, hogy . Ugyanígy kapjuk, hogy . Ekkor viszont , ami viszont ellentmondás. Tehát azt láttuk be, hogy olyan szám, hogy minden nála nem kisebb -re -et színezve lesz a gráfban kék , vagy piros . Ekkor viszont a legkisebb ilyen szám kisebb vagy egyenlő -vel.
Becslések r(k,l)-re
[szerkesztés]Felső becslés
[szerkesztés]
Alsó becslés
[szerkesztés]Ha , akkor
Alkalmazások
[szerkesztés]Schur tétele
[szerkesztés]Ha elég nagy, és az első n pozitív egész számot r színnel kiszínezzük, akkor lesz az egyenletnek egyszínű megoldása, azaz olyan számok, amikre áll, és mindegyik egyszínű.
Források
[szerkesztés]- Katona Gyula Y., Recski András, Szabó Csaba. A számítástudomány alapjai. Typotex Kiadó (2001). ISBN 963-9326-68-2