Ugrás a tartalomhoz

Exponenciális eloszlás

A Wikipédiából, a szabad enciklopédiából
A lap aktuális változatát látod, az utolsó szerkesztést Csigabi (vitalap | szerkesztései) végezte 2021. január 9., 12:22-kor. Ezen a webcímen mindig ezt a változatot fogod látni.
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)

Az X valószínűségi változó λ paraméterű exponenciális eloszlást követ – vagy rövidebben exponenciális eloszlású – pontosan akkor, ha sűrűségfüggvénye

ahol λ > 0.

Az exponenciális eloszlást jellemző függvények

[szerkesztés]

Eloszlásfüggvénye

Karakterisztikus függvénye

Az exponenciális eloszlást jellemző számok

[szerkesztés]

Várható értéke

Szórása

Momentumai

Ferdesége

Lapultsága

Exponenciális eloszlású valószínűségi változók néhány fontosabb tulajdonsága

[szerkesztés]
  • Exponenciális eloszlású független valószínűségi változók összege Γ-eloszlású. Pontosabban ha X1, X2, … Xn független, λ paraméterű exponenciális eloszlású valószínűségi változók, akkor X1 + X2 + … + Xn n rendű, λ paraméterű Γ-eloszlású valószínűségi változó.
  • Az exponenciális eloszlás rendelkezik az örökifjú tulajdonsággal, vagyis tetszőleges és esetén teljesül, hogy:

Megjegyzés

[szerkesztés]

Van, hogy exponenciális eloszlás alatt a valószínűségi eloszlások egy szélesebb csoportját értik. Ilyenkor bármilyen aR értékre X + a -t is exponenciális eloszlásúnak definiálják, ahol X egy, a fenti értelemben vett exponenciális eloszlású valószínűségi változó. (Lényegében a valós számmal való eltolásra nézve zárttá teszik az exponenciális eloszlások halmazát.)

Források

[szerkesztés]
  • Fazekas I. (szerk.) (2000): Bevezetés a matematikai statisztikába. Kossuth Egyetemi Kiadó, Debrecen.