Maximum likelihood módszer

A Wikipédiából, a szabad enciklopédiából

A maximum likelihood módszer (magyarul: legnagyobb valószínűség) a matematikai statisztika egyik leggyakrabban használt becslési eljárása mérési eredmények, minták kiértékelésére.

A maximum likelihood módszer célja, hogy adott mérési értékekhez, az ismeretlen paramétereknek olyan becslését adja meg, amely mellett az adott érték a legnagyobb valószínűséggel következik be. Az eljárás a likelihood függvény maximalizálásával történik.

Definíció[szerkesztés]

A maximum likelihood becslés azokban az esetekben használatos amikor az egyes mérési eredmények olyan véletlen eseményekként interpretálhatóak, amelyek egy vagy több ismeretlen paramétertől függenek. Mivel a vizsgált értékek kizárólagosan az ismeretlen paraméter(ek)től függenek, előállíthatók ezen paraméter vagy paraméterek függvényeként. A mérést, becslést végző kutató ezt a paramétert határozza meg, így maximalizálja a mért minta által követett valószínűséget.

A maximum likelihood módszer egy valószínűségi változóból indul ki, amelynek a sűrűség- vagy tömegfüggvénye és paramétertől függ.

Véletlenszerű mintavételezéskor, független és azonos feltételek között végzett mintavétel esetén, a sűrűség- vagy tömegfüggvény a következő formula szerint faktorizálható:

Amíg rögzített paraméter esetén a sűrűségfüggvény tetszőleges értékkel határozható meg, fordítva járunk el, és rögzített értékekre a sűrűségfüggvényt mint a paraméter függvényét tekintjük. Ezt nevezzük likelihood-függvénynek:

A becslés a likelihood-függvény maximumának a megkeresése, azaz egy szélsőérték feladat. A számítások egyszerűsítése céljából a gyakorlatban nem az eredeti likelihood-függvényt használjuk, hanem annak a természetes alapú logaritmusát. Mivel a függvény szigorúan monoton növekvő függvény a szélsőérték helye nem változik és egy összeggel egyszerűbb számolni mint egy szorzattal. Ezt a függvényt gyakran nevezik loglikelihood függvénynek:

Példa[szerkesztés]

A normális eloszlás sűrűségfüggvénye várhatóértékkel és szórással a következő:

Tekintsük a független mérési eredményeket amelyek a feltételezés szerint ismeretlen várhatóértékkel és ismeretlen szórással normális eloszlást követnek. A következő likelihood függvénnyel kell számolnunk: .

a loglikelihood függvény pedig:

Források[szerkesztés]