Boltzmann-eloszlás
A matematikában, kémiában, és a fizikában a Boltzmann-eloszlás (Gibbs-eloszlásnak is szokták hívni)[1] egy valószínűség-eloszlás, vagy valószínűség-mérték, mely egy rendszer állapotainak eloszlását jellemzi.
Például a Boltzmann-eloszlás megadja, hogy egy elszigetelt rendszerben milyen valószínűséggel, illetve milyen gyakorisággal fordulhatnak elő egy adott energiával rendelkező molekulák.
Az eloszlást 1901-ben fedezte fel J. W. Gibbs a klasszikus statisztikus mechanika tanulmányozása kapcsán. Ezzel alapozta meg a kanonikus sokaság koncepcióját. Egy még általánosabb beállításban a Boltzmann-eloszlást Gibbs-mértéknek ismerik.
Definíció
[szerkesztés]A Boltzmann-eloszlás Ni / N részecskére, melyek i állapotban, Ei energiával rendelkeznek:
ahol a Boltzmann-állandó, T a hőmérséklet, , az Ei energiával rendelkező szintek száma; (néha az általánosabb „állapot”-ot használják a szintek helyett). N a részecskék teljes száma, és Z(T) a partíciófüggvény.
Más értelmezésben, egy jól definiált hőmérsékleten lévő egyedülálló rendszernél megadja annak a valószínűségét, hogy a rendszer a specifikált állapotban tartózkodik.
A Boltzmann-eloszlás csak azokra a részecskékre érvényes, melyek elég magas hőmérsékletűek, és sűrűségük elegendően alacsony ahhoz, hogy a kvantumhatások elhanyagolhatók legyenek, és a részecskék a Maxwell–Boltzmann statisztika szerint viselkednek. (Lásd még a Boltzmann-eloszlás deriválása cikket).[2][3]
A Boltzmann-eloszlást gyakran a β = 1/kT kifejezéssel írják le, ahol a β a termodinamikus béta. Az vagy a kifejezéseket, melyek egy állapot relatív valószínűségét adják meg, Boltzmann-tényezőnek hívják; gyakran előfordulnak fizikai és kémiai tanulmányokban.
Amikor az energia egyszerűen a részecske mozgási energiája:
akkor az eloszlás helyesen adja meg a gázmolekulák sebességének Maxwell–Boltzmann eloszlását, melyet Maxwell már 1859-ben megjósolt. A Boltzmann-eloszlás azonban jóval általánosabb. Például megjósolja a részecskesűrűség változásait gravitációs térben, ha . Valójában az eloszlás mindig alkalmazható, amikor a kvantumhatás elhanyagolható.
Néhány esetben, a folytonossági közelítés használható. Ha g(E) dE állapotok E től E + dE energiával rendelkeznek, akkor a Boltzmann-eloszlás megjósolja az energia valószínűség-eloszlását:
Ekkor g(E) az állapotok sűrűsége, ha az energiaspektrum folytonos. Az ilyen energiaeloszlást mutató klasszikus részecskék a Maxwell–Boltzmann-statisztika szerint viselkednek.
A klasszikus korlátok esetén, például nagy értékeinél, vagy kis állapotsűrűség esetén, amikor a részecskék hullámfüggvényei gyakorlatilag nem fedik át egymást, mind a Bose–Einstein-, mind a Fermi–Dirac-eloszlások Boltzmann-eloszlásokká válnak.
Deriválás
[szerkesztés]Jegyzetek
[szerkesztés]- ↑ Landau, Lev Davidovich; and Lifshitz, Evgeny Mikhailovich. Statistical Physics, 3, Pergamon Press [1976] (1980). ISBN 0-7506-3372-7 Translated by J.B. Sykes and M.J. Kearsley. See section 28
- ↑ Derivation of the Boltzmann distribution Archiválva 2010. július 4-i dátummal a Wayback Machine-ben (angolul)
- ↑ Derivation of the Boltzmann Distribution Function[halott link] PDF (angolul)
Fordítás
[szerkesztés]- Ez a szócikk részben vagy egészben a Boltzmann distribution című angol Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
Források
[szerkesztés]- Landau, Lev Davidovich; Lifshitz, Evgeny Mikhailovich: Statistical Physics. 5 (3 ed.). (hely nélkül): Oxford: Pergamon Press. 1980. ISBN 0-7506-3372-7
- Magyarul: L. D. Landau – J. M. Lifsic – L. P. Pitajevszkij: Elméleti fizika V. Statisztikus fizika I. (Tankönyvkiadó, 1981) ISBN 978-963-2791-33-3