Implicitfüggvény-tétel

A Wikipédiából, a szabad enciklopédiából

Az implicitfüggvény-tétel a matematikai analízis, közelebbről a differenciálelmélet leghatékonyabban alkalmazható tétele olyan feladatokra, amikor egy adott nemlineáris egyenletrendszer megoldásait próbálják megkeresni. Legegyszerűbb esetben arról van szó, hogy egy síkbeli görbe egyenletéből kifejezhető-e az y változó az x segítségével, és ezzel megadható-e a görbe egy szakasza függvénygrafikonként.

Bevezetés[szerkesztés | forrásszöveg szerkesztése]

Implicit megadású függvényről akkor beszélünk, amikor egy függvény megadása nem (az explicit módon) y = f(x) alakban történik, hanem az x és y kapcsolatát egy mindkét változót tartalmazó

F(x,y) = 0 \,

egyenlet írja le. A fogalom Cauchytól származik (1823).[1]

Például adjunk meg olyan függvényt, melynek grafikonja valamely kör egy szakasza. Az

x^2+y^2=1\,

egyenletű körből könnyű az y változót kifejezni, az \mbox{ }_{y=\sqrt{1-x^2}} és \mbox{ }_{y=-\sqrt{1-x^2}} alakokat kapjuk. Bonyolultabb esetekben, például a

e^{x^y}+\mathrm{arctg}\,y^4-\sin y =x\,

esetén semmi reményünk, hogy az y változóra valamilyen egyenletrendezéssel általános képletet kapjunk. Az ilyen példák miatt nevezik ezeket a típusú függvényeket implicit, avagy régi, választékos kifejezéssel élve bennrekedt függvényeknek. A differenciálszámítás szempontjából megelégedhetünk azzal, ha az implicit függvény deriváltját ki tudjuk számolni. Sok esetben ebből már következtethetünk a függvényre vagy annak viselkedésére is.

A modern analízis szemszögéből egy N × M \rightarrow K normált terek között ható F függvény aN és bM pontokhoz tartozó implicit függvényén olyan, az a egy U környezetén értelmezett és a b egy V környezetébe képező f:U \rightarrow V függvényt értünk, melyre f(a)=b és minden xU pont esetén rendelkezik az

F(x,f(x))=0\,

tulajdonsággal. Amelyet szavakban úgy fogalmazhatunk meg, hogy az F(x,y)=0 egyenletből az y változó kifejezhető y=f(x) alakban.

Tágabb értelemben egy F : H × K \rightarrow L kétváltozós halmazelméleti függvény (a,b) ∈ H × K párhoz tartozó implicit függvénye olyan f, a H egy részhalmazán értelmezett, K-ba képező függvény, mely a-ban értelmezve van, f(a)=b és minden az értelmezési tartományába tartozó x pontra: F(x,f(x))=F(a,b).

Az egyváltozós eset[szerkesztés | forrásszöveg szerkesztése]

TételImplicitfüggvény-tétel R-beli implicit függvényre – Legyen F az R2 egy részhalmazán értelmezett, R-be képező függvény, mely az értelmezési tartománya egy (a,b) belső pontjában erősen differenciálható, F(a,b) = 0 és

\partial_2 F(a,b)\neq 0

(azaz (a,b)-ben az y szerinti parciális deriváltja nem nulla). Ekkor van a-nak olyan I és b-nek olyan J környezete, hogy F-nek egyértelműen létezik az (a,b) párhoz tartozó f: I \rightarrow J implicit függvénye, mely erősen differenciálható a-ban és deriváltja:

f'(a)=-\frac{\partial_1 F(a,b)}{\partial_2 F(a,b)}

Bizonyítás. A (a,b)-beli erős differenciálhatóságból következik, hogy F folytonosan differenciálható (a,b)-ben. Választhatunk tehát olyan I és J nyílt intervallumokat, a és b körül, hogy I × J-n ∂2F sehol sem nulla, azonos előjelű. Feltehetjük, hogy ∂2F pozitív. Vegyük észre, hogy az implicit függvény létezése egyenértékű azzal, hogy minden xI-re az F( x , . ) parciális függvénynek zérushelye van J-ban, hiszen ekkor minden x-hez létezik olyan y ∈ J, hogy F(x,y)=0. Belátjuk, hogy minden ilyen x-hez egyetlen zérushelye van F( x , . )-nek.

Az F kétváltozós függvény (a,b)-beli érintősíkja és az xy sík metszete közel egybeesik az implicit függvény görbéjével. Az érintősíknak ebből a felülethez simuló tulajdonságából vezethető le az implicitfüggvény-tétel. Egy esetben nem állíthatjuk általánosan, hogy létezik ilyen függvény, ha a síkok metszésvonala párhuzamos az y tengellyel. Ekkor nem feltétlenül létezik az y=f(x) implicit függvény, vagy legalábbi is biztosan nem differenciálható.

Tekintsük a folytonos F( a , . ) parciális függvényt. Az erős differenciálhatóságból és a pozitívra választott deriváltból következik, hogy ez I-n szigorúan monoton növekvő. Mivel b-ben zérushelye van ( F(a,b)=0 ), ezért van olyan y_2 > b pont, hogy ott F( a , . ) pozitív és y_1 < b pont, hogy ott F( a , . ) negatív. Ekkor F folytonossága miatt van az (a,y_1) pontnak olyan környezete, ahol F negatív és van az (a,y_2) pontnak olyan környezete, ahol F pozitív. Most definiáljuk át I-t és J-t úgy, hogy I × J-n az F egy J-beli elem fölött mindenhol pozitív, egy J-beli elem alatt mindehol negatív értéket vegyen föl.

Az erős differenciálhatóságból az is következik, hogy minden x ∈ I-re az F( x , . ) függvény is szigorúan monoton növekvő, negatív és pozitív értéket is felvevő folytonos függvény, így a Bolzano-tétel alapján létezik y_x zérushelye és mindegyiknek egyetlen zérushelye létezik. Állítjuk, hogy a φ:I \rightarrow J, x \mapsto y_x függvény implicit függvénye F-nek, azaz minden x ∈ I-re F(x,φ(x))=0.

Könnyen belátható, hogy φ folytonos a-ban, hiszen ha a-hoz közeledve mindig találnánk olyan x pontot, hogy φ(x) egy adott ε-nál mindig jobban eltér b-től, akkor φ(x) egy olyan környezetbe esne bele, ahol F mindenhol egy pozitív számnál nagyobb vagy mindenhol egy negatív számnál kisebb. Ám, F(x,φ(x))=0, így ez ellentmondana F folytonos tulajdonságának.

φ erősen differenciálható (a,b)-ben, hiszen tetszőleges x_1, x_2I-re az F erős differenciálhatósága miatt fennáll

0=F(x_1,\varphi(x_1))-F(x_2,\varphi(x_2))=
=\partial_1F(a,b)(x_2-x_1)+\partial_2F(a,b)(\varphi(x_2)-\varphi(x_1))+
+\varepsilon\cdot(x_2-x_1)+\eta\cdot(\varphi(x_2)-\varphi(x_1))

azaz (a pozitív ∂2F(a,b) miatt pozitívra választható ∂2F(a,b)+η miatt):

\frac{\varphi(x_2)-\varphi(x_1)}{x_2-x_1}=-\frac{\partial_1F(a,b)+\varepsilon}{\partial_2F(a,b)+\eta}

és innen (x_1,x_2)\to(a,a) határátmenetet véve, a másodendű tagok eltűnését követően kapjuk az állítás eredményét.

Felhívjuk a figyelmet arra, hogy az implicit függvény értékére fennáll ugyan a

\mbox{ }_{\varphi(x)=\varphi(a)-\frac{\partial_1F(a,b)+\varepsilon}{\partial_2F(a,b)+\eta}(x-a)}

egyenlőség, de mivel ε és η ki nem írt argumentumaiban szerepel φ(x), ezért ez sem egy explicit alak.

Kapcsolat az inverzfüggvény-tétellel[szerkesztés | forrásszöveg szerkesztése]

Vegyük észre, hogy mivel mindegyik F( x , . ) parciális függvény szigorúan monoton, így az (x,y) \mapsto (x, F(x,y)) függvény is injektív. Érdemes tehát az inverzét felírni, az (x,z)\mapsto(x,y) függvényt. Mivel minden egyes x és z pontra egyetlen y van, hogy F(x,y)=z, ezért z=0 esetén is minden x-hez egyetlen y van, hogy F(x,y)=0, mely az F implicit függvényét szolgáltatja. Ennek a függvénynek a szükséges differenciálhatósági tulajdonságainak bizonyításához hatékonyan használhatjuk fel az inverzfüggvény-tételt. Nem véletlen a kapcsolat a két tétel között. Az előző bizonyítást és a többváltozós eset bizonyítását is végezhetjük az inverzfüggvény-tétellel, sőt az utóbbi esetben csak ezzel. Másrészt az is igaz, hogy a két tétel állítása ekvivalens egymással.

Példák[szerkesztés | forrásszöveg szerkesztése]

Tekintsük a következő egyenletű síkgörbét:

x^5+xy+y^5=3\,

Nem lenne könnyű feladat kifejezni belőle y-t, mert az ötödfokú egyenletnek nincs általános megoldóképlete. Mivel a bal oldal akárhányszor differenciálható, ezért joggal feltételezhetjük, hogy bizonyos pontokban létezik implicit függvénye. Tegyük fel, hogy φ ilyen függvény. Ekkor az egyenlet

x^5+x\varphi(x)+(\varphi(x))^5=3

alakú, melynek minden olyan x-nél, ahol φ differenciálható:

5x^4+\varphi(x)+x\varphi'(x)+5\varphi^4(x)\cdot\varphi'(x)=0

ahonnan a derivált: \varphi'(x)=-\frac{5x^4+\varphi(x)}{5\varphi^4(x)+x} vagy szimbolikusan: y'=-\frac{5x^4+y}{5y^4+x}. Alaposabb vizsgálatokkal kideríthető, hogy ez a derivált minden pontban létezik és negatív, így az implicit függvény mindenhol létezik és szigorúan monoton csökkenő. Vegyük észre, hogy a nevezőben lévő kifejezés pont ∂yF(x,y) és az implicit függvény létezésének feltétele pont a nevező nullától különböző volta.

Többváltozós eset[szerkesztés | forrásszöveg szerkesztése]

Ebben az esetben is az „érintősík” végtelenül közelítő tulajdonsága játszik majd fontos szerepet. Jól látható az összefüggés, ha feltesszük, hogy F egy Rn×Rm-en értelmezett affin függvény, azaz egy lineáris leképezés eltoltja. Ekkor

F(x,y) = F(a+h,b+k) = F(a,b)+dF1(a,b)h+dF2(a,b)k.

Amennyiben y = y(x) olyan, hogy y(a) = b és F(x,y(x)) = 0, akkor fennáll a 0 = dF1(a,b)h + dF2(a,b)k egyenlőség és k kifejezhető, amennyiben az A = dF2(a,b) mátrix invertálható. A B = dF1(a,b) jelöléssel ekkor

k = -(A-1\cdotB) h.

Általános esetben ez csak egy másodrendűen kicsiny tag hozzávételével lesz igaz, de az implicit függvény létezésének belátásához szükséges a fenti gondolatmenet is.

Banach-terek esetén (melyek akár végtelen dimenziósak is lehetnek) a tétel a következő.

TételImplicitfüggvény-tétel Banach-terekre – Legyen E, H, G Banach-terek, F:E × H \rightarrow G olyan függvény, mely (a,b) ∈ E × H-ban erősen differenciálható. Ha a ∂2F(a,b) lineáris leképezés injektív és az inverzével együtt folytonos, akkor egyértelműen létezik az F-nek egy az (a,b) párhoz tartozó f lokális implicit függvénye, ez erősen differenciálható a-ban és differenciálja:

df(a)=-(\partial_2 F(a,b))^{-1}\circ(\partial_1 F(a,b))

Vagy egy kevésbé absztrakt tétel:

TételImplicitfüggvény-tétel Rn-re – Legyen F:Rn×Rm\rightarrowRm folytonosan differenciálható függvény, (a,b) ∈ Rn×Rmolyanok, hogy F(a,b)=0 és \mbox{ }_{\det\left(\frac{\partial F_i(a,b)}{\partial y_k}\right)_{i,k=1,...,m}\ne 0}. Ekkor egyértelműen létezik F-nek egy az (a,b)-hez tartozó lokális implicit függvénye.

Hivatkozások[szerkesztés | forrásszöveg szerkesztése]

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

  1. Szőkefalvi-Nagy Béla: Valós függvények és függvénysorok, Tankönyvkiadó, Bp., 1972; Előszó, 14. o.

Források[szerkesztés | forrásszöveg szerkesztése]