SPARC

A Wikipédiából, a szabad enciklopédiából
Sun UltraSPARC II mikroprocesszor

A SPARC (skálázható processzor-architektúra, a Scalable Processor Architecture szavakból) a Sun Microsystems által kifejlesztett 32 és 64 bites RISC típusú utasításkészlet-architektúra (ISA). A SPARC ISA tervezése a Sun-nál 1984-ben kezdődött,[1] 1986-ban a Sun és a Fujitsu együttműködésével elkészültek az első SPARC V7 architektúrájú processzorok,[2][3] 1987 közepén pedig piacra kerültek a SPARC processzoros Sun-4 munkaállomások.[4]

A SPARC egy bejegyzett védjegy, amely a SPARC International, Inc. konzorcium tulajdona. Ez a szervezet 1989-ben alakult a SPARC architektúra terjesztésének elősegítése, valamint a konformancia-ellenőrzések biztosítása és védjegyek kezelése céljából. A kezdetben 32 bites SPARC architektúrát a Sun Sun-4-es munkaállomások és szerverek számára fejlesztették ki, amellyel a korábbi, Motorola 68000-as processzorokat használó Sun-3-as rendszereket kívánták felváltani. Később kifejlesztették az architektúra a 64 bites verzióját; a 64 bites SPARC processzorok változatait a Sun Microsystems, Solbourne, Fujitsu és más gyártók szimmetrikus multiprocesszoros (SMP) és ccNUMA technológiákat használó gépeikben alkalmazzák.

A SPARC International nyílttá kívánta tenni az architektúrát a kialakítás minél szélesebb körben való elterjesztése érdekében. Ennek egyik lépéseként a licencet több gyártónak is átadta, pl. a Texas Instruments, Atmel, Cypress Semiconductor és Fujitsu cégeknek. Ennek köszönhetően mára a SPARC architektúra teljesen nyílt és nem kötődik egyetlen tulajdonoshoz.

2006 márciusában a Sun Microsystems kiadta az UltraSPARC T1 mikroprocesszor terveit nyílt forrásként, OpenSPARC T1 néven; a teljes dokumentáció hozzáférhető az OpenSPARC.net webhelyen. 2007-ben ugyanígy közzétette az UltraSPARC T2 processzor terveit, OpenSPARC T2 néven.[5]

A SPARC processzor újabb keletű kereskedelmi célú megvalósításai a Fujitsu Laboratories Ltd. által 2009 júniusában megjelentetett SPARC64 VIIIfx típusú „Venus” kódnevű processzor (nyolc mag, 2 GHz, 128 GFLOPS), amelyet a 8 petaFLOPS teljesítményt elérő japán szuperszámítógépben, a „K computer”-ben használnak, ezután a 2012 augusztusában bemutatott SPARC64 X „Athena” processzor[6]. Az Oracle Corporation továbbra is fejleszti SPARC processzorsorozatát, amelynek legújabb tagjai a 2011 szeptemberében megjelent 2,85–3,0 GHz órajelen működő SPARC T4, és a 2013 márciusában bevezetett 3,6 GHz-en futó 16 magos SPARC T5 processzor.

 

Általános jellemzők[szerkesztés | forrásszöveg szerkesztése]

A SPARC architektúrára nagy hatással voltak a kaliforniai Berkeley Egyetemen (University of California, Berkeley) kifejlesztett korai RISC I és RISC II architektúrák és az IBM 801. Ezek a korai RISC kialakítások igen minimalisták voltak, a lehető legkevesebb utasítást tartalmazták és célként tűzték ki az összes utasítás lehetőleg egy órajelciklus alatti végrehajtását. Hasonlóképpen a MIPS architektúra kezdeti verzióiból szintén hiányoztak az olyan bonyolultabb utasítások, mint például a szorzás és osztás. A RISC processzorokban alkalmazott ugrási késleltetési rés (branch delay slot) szintén megjelenik a SPARC processzoroknál.

A SPARC processzorok sok általános célú regisztert tartalmaznak, ezek száma akár 160 is lehet. Ezek közül a szoftverek bármely tetszőleges időpontban csak 32-t láthatnak – 8 globális regiszter (az egyik közülük a g0, bedrótozottan nulla értékű, tehát csak 7 használható regiszterként), a többi 24 a regiszterveremben helyezkedik el. Ezt a 24 regisztert hívják regiszterablaknak, ezeket használják szubrutinhíváskor és -visszatéréskor, ez az ablak mozog fel és le a regiszterveremben. Az ablakok helyzete előre definiált. Minden ablak rendelkezik 8 lokális regiszterrel és megoszt még nyolcat a szomszédos ablakkal. A megosztott regisztereket függvényparaméter-átadásra vagy értékek visszaadására használják, a lokális regisztereket a helyi / adott függvényben lokális értékek tárolására használják függvényhívások között.

A skálázhatóság azt jelenti, hogy a SPARC specifikáció lehetővé teszi különböző felépítésű processzorok megvalósítását, a beágyazott rendszerek processzoraitól kezdve a nagy, szerverekbe szánt processzorokig, amelyekben mindben megtalálható ugyanaz az alap, nem privilegizált utasításkészlet. Az architektúra egyik skálázható paramétere a megvalósított regiszterablakok száma: a specifikáció lehetővé teszi 3-tól 32-ig terjedő számú regiszterablak megvalósítását. Eszerint egy processzor tartalmazhat 32 regiszterablakot, a hívási verem maximális hatékonysága céljából; vagy tartalmazhat mindössze 3-at, ami a kontextusváltás idejét csökkenti, de akár a két szám között akármennyit. Hasonló regiszterfájl-tulajdonságokkal más architektúrák is rendelkeznek, ilyenek pl. az Intel i960, IA-64 és az AMD 29000 (utóbbinál a regiszterablak mérete nem rögzített, hanem változó).

Az architektúrának mára több revíziója is megjelent. A nyolcas verzióban pl. megjelent a hardveres szorzás és osztás.[7][8] A kilences verzió legjelentősebb változása, hogy az architektúra 64 bites bővítést kapott; az 1994-ben közzétett SPARC-V9 specifikációban megjelent a 64 bites adat- és címkezelés.[9]

A SPARC Version 8 szerint a lebegőpontos regiszterfájl 16 dupla pontosságú regisztert tartalmaz. Ezek közül mindegyik használható két egyszeres pontosságú regiszterként, ami így összesen 32 egyszeres pontosságú regisztert biztosít. A páratlan és páros számú duplapontos regiszterek négyszeres pontosságú regiszterekké foghatók össze, ezáltal 8 négyszeres pontosságú regiszter használható. A SPARC Version 9 még további 16 dupla pontosságú regisztert adott a készlethez (amelyek szintén 8 négyszeres pontosságú regiszterként is elérhetők), azonban ezeket az új regisztereket már nem lehet egyszeres pontosságú regiszterként használni.

Megjelent a „tagged integer” típusú összeadás és kivonás, amelyben az értékek két alsó bitje nem vesz részt a számításban – ez gyorsítja az ML, Lisp és más, hasonló típust használó nyelvek futtatási környezeteinek működését.

A SPARC-V8 architektúra kizárólag a big-endian bájtsorrendet támogatta. A 64 bites SPARC-V9 architektúra az utasításokban big-endian bájtsorrendet használ, de az adatok bájtsorrendje lehet big-endian vagy little-endian, a választást az alkalmazás load/store utasításainak szintjén lehet meghatározni, vagy memórialaptól függően, az MMU szintjén. Ez előnyös lehet az önmagukban little-endian sorrendet használó eszközökkel (pl. PCI busz) való adatcsere esetén.

Története[szerkesztés | forrásszöveg szerkesztése]

Az architektúrának három nagyobb revíziója volt. Az első közzétett verzió az 1986-ban megjelent 32 bites SPARC Version 7 (V7). A SPARC Version 8 (V8), egy javított architektúra-leírás, 1990-ben jelent meg. A főbb eltérések a V7 és V8 között az egészértékű szorzó és osztó utasítások megjelenése, és a 80 bites kiterjesztett pontosságú lebegőpontos aritmetika 128 bites négyszeres pontosságú adattípussal és aritmetikával való kiterjesztése. A SPARC V8 szolgált az IEEE 1754-1994 sz. szabvány alapjául, amely az IEEE 32 bites mikroprocesszor-architektúrájának szabványa (utasításkészlet, regisztermodell, adattípusok, opkódok és koprocesszor-interfész definíció).

A SPARC Version 9, a SPARC 64 bites architektúrája 1993-ban jelent meg, a SPARC International kiadásában. A SPARC Architektúra Bizottság fejlesztette ki, amelynek tagjai a következők: Amdahl Corporation, Fujitsu, ICL, LSI Logic, Matsushita, Philips, Ross Technology, Sun Microsystems és a Texas Instruments.

2002-ben a Fujitsu és a Sun közzétette a SPARC Joint Programming Specification 1 (JPS1) specifikációt, amely a két cég által készített processzorokban azonos módon megvalósított processzorfunkciókat írta le („Commonality”). Az első JPS1 specifikációnak megfelelő CPU-k a Sun UltraSPARC III és a Fujitsu SPARC64 V processzorai voltak. A JPS1 által nem lefedett funkcionalitás a processzorok külön „megvalósítási függelék”-ében („Implementation Supplements”) vannak leírva.

2006 elején a Sun kiadott egy bővített architektúra-specifikációt, az UltraSPARC 2005-öt (UltraSPARC Architecture 2005). Ez nem csak a privilegizált és nem privilegizált részeket tartalmazta a SPARC V9-ből, hanem ráadásul minden architekturális bővítést is, például a CMT, hiperprivilegizált, VIS 1 és VIS 2 vizuális utasításkészlet-bővítéseket, amelyek jelen vannak a Sun UltraSPARC processzoraiban az UltraSPARC T1 implementáció óta. Az UltraSPARC 2005 architektúra tartalmazza a Sun standard kiterjesztéseit és teljes mértékben megfelel a SPARC V9 Level 1 specifikációnak.

2007-ben a Sun kiadta az UltraSPARC 2007 architektúra (UltraSPARC Architecture 2007) specifikációt, ennek az UltraSPARC T2 típus felel meg.

Az architektúra biztosítja a folyamatos bináris alkalmazás-kompatibilitást az első, 1987-es SPARC V7-től kezdve egészen a Sun UltraSPARC architektúra implementációkig.

A SPARC különböző megvalósított változatai közül nagyon népszerű volt a Sun SuperSPARC és UltraSPARC-I változat, ezeket használták referenciarendszernek a SPEC CPU95 és CPU2000 teljesítménytesztekhez (benchmarks). A 296 MHz-es UltraSPARC-II a SPEC CPU2006 benchmark referenciarendszere.

A SPARC architektúra licenceit több cég megszerezte és ennek alapján különböző implementációkat fejlesztettek ki és gyártottak, köztük az alábbiak:

SPARC64[szerkesztés | forrásszöveg szerkesztése]

A Fujitsu (kezdetben HAL Computer Systems nevű leányvállalatán keresztül) 1995 óta tervez SPARC V9 specifikációnak megfelelő processzorokat, amelyek a SPARC64 márkanév alatt futnak. Ide tartozik a SPARC64 V is, amit a Fujitsu PRIMEPOWER szervercsalád használ; és a SPARC64 VI, amit a Sun és a Fujitsu a SPARC Enterprise M-osztályú szervercsalád használ. 2008 közepétől kezdték meg a SPARC64 VII processzorok szállítását, amelyeket szintén az M-osztályú szerverekben használnak fel.

SPARC mikroprocesszorok adatai[szerkesztés | forrásszöveg szerkesztése]

Ebben a táblázatban a SPARC processzorok néhány jellemző adata látható. Az oszlopok: órajel-frekvencia MHz-ben, architektúraverzió, kiadás éve, szálak száma (szálak egy magban × magok száma), gyártási processz (mikron), tranzisztorok száma (millió), lapkaméret (mm2), I/O lábak száma, disszipáció (watt), feszültség, gyorsítótárak mérete: Dcache: adat-cache, Icache: utasítás-gyorsítótár, utasítások, L2 és L3 (KiB).

név (kódnév) modell órajel fr. (MHz) arch. verzió kiadás éve szálszám [megj 1] processz (µm) tr. szám (millió) lapkaméret (mm²) I/O lábak disszipáció (W) feszültség (V) L1 Dcache (KiB) L1 Icache (KiB) L2 cache (KiB) L3 cache (KiB)
SPARC (különféle), pl. MB86900 [megj 2] 14,28–40 V7 1987-1992 1×1=1 0,8–1,3 ~0,1–1,8 -- 160–256 -- -- 0–128 (egyesített) nincs nincs
microSPARC I (Tsunami) TI TMS390S10 40–50 V8 1992 1×1=1 0,8 0,8 225 ? 288 2,5 5 2 4 nincs nincs
SuperSPARC I (Viking) TI TMX390Z50 / Sun STP1020 33–60 V8 1992 1×1=1 0,8 3,1 -- 293 14,3 5 16 20 0-2048 nincs
SPARClite Fujitsu MB8683x 66–108 V8E 1992 1×1=1 -- -- -- 144, 176 -- 2,5/3,3 V-5,0 V, 2,5 V-3,3 V 1, 2, 8, 16 1, 2, 8, 16 nincs nincs
hyperSPARC (Colorado 1) Ross RT620A 40–90 V8 1993 1×1=1 0,5 1,5 -- -- -- 5 ? 0 8 128-256 nincs
microSPARC II (Swift) Fujitsu MB86904 / Sun STP1012 60–125 V8 1994 1×1=1 0,5 2,3 233 321 5 3,3 8 16 nincs nincs
hyperSPARC (Colorado 2) Ross RT620B 90–125 V8 1994 1×1=1 0,4 1,5 -- -- -- 3,3 0 8 128-256 nincs
SuperSPARC II (Voyager) Sun STP1021 75–90 V8 1994 1×1=1 0,8 3,1 299 -- 16 -- 16 20 1024-2048 nincs
hyperSPARC (Colorado 3) Ross RT620C 125–166 V8 1995 1×1=1 0,35 1,5 -- -- -- 3,3 0 8 512-1024 nincs
TurboSPARC Fujitsu MB86907 160–180 V8 1996 1×1=1 0,35 3,0 132 416 7 3,5 16 16 512 nincs
UltraSPARC (Spitfire) Sun STP1030 143–167 V9 1995 1×1=1 0,47 3,8 315 521 30 [megj 3] 3,3 16 16 512-1024 nincs
UltraSPARC (Hornet) Sun STP1030 200 V9 1998 1×1=1 0,42 5,2 265 521 -- 3,3 16 16 512-1024 nincs
hyperSPARC (Colorado 4) Ross RT620D 180–200 V8 1996 1×1=1 0,35 1,7 -- -- -- 3,3 16 16 512 nincs
SPARC64 Fujitsu (HAL) 101–118 V9 1995 1×1=1 0,4 -- többchipes 286 50 3,8 128 128 -- --
SPARC64 II Fujitsu (HAL) 141–161 V9 1996 1×1=1 0,35 -- többchipes 286 64 3,3 128 128 -- --
SPARC64 III Fujitsu (HAL) MBCS70301 250–330 V9 1998 1×1=1 0.24 17.6 240 -- -- 2.5 64 64 8192 --
UltraSPARC IIs (Blackbird) Sun STP1031 250–400 V9 1997 1×1=1 0,35 5,4 149 521 25 [megj 4] 2,5 16 16 1024 vagy 4096 nincs
UltraSPARC IIs (Sapphire-Black) Sun STP1032 / STP1034 360–480 V9 1999 1×1=1 0,25 5,4 126 521 21 [megj 5] 1,9 16 16 1024–8192 nincs
UltraSPARC IIi (Sabre) Sun SME1040 270–360 V9 1997 1×1=1 0,35 5,4 156 587 21 1,9 16 16 256–2048 nincs
UltraSPARC IIi (Sapphire-Red) Sun SME1430 333–480 V9 1998 1×1=1 0,25 5,4 -- 587 21 [megj 6] 1,9 16 16 2048 nincs
UltraSPARC IIe (Hummingbird) Sun SME1701 400–500 V9 1999 1×1=1 0,18 Al -- -- 370 13 [megj 7] 1,5-1,7 16 16 256 nincs
UltraSPARC IIi (IIe+) (Phantom) Sun SME1532 550–650 V9 2000 1×1=1 0,18 Cu -- -- 370 17,6 1,7 16 16 512 nincs
SPARC64 GP Fujitsu SFCB81147 400–563 V9 2000 1×1=1 0,18 30,2 217 -- -- 1,8 128 128 8192 --
SPARC64 GP -- 600–810 V9 -- 1×1=1 0,15 30,2 -- -- -- 1,5 128 128 8192 --
SPARC64 IV Fujitsu MBCS80523 450–810 V9 2000 1×1=1 0,13 -- -- -- -- -- 128 128 2048 --
UltraSPARC III (Cheetah) Sun SME1050 600 V9 / JPS1 2001 1×1=1 0,18 Al 29 330 1368 53 1,6 64 32 8192 nincs
UltraSPARC III (Cheetah) Sun SME1052 750–900 V9 / JPS1 2001 1×1=1 0,13 Al 29 -- 1368 -- 1,6 64 32 8192 nincs
UltraSPARC III Cu (Cheetah+) Sun SME1056 1002–1200 V9 / JPS1 2001 1×1=1 0,13 Cu 29 232 1368 80 [megj 8] 1,6 64 32 8192 nincs
UltraSPARC IIIi (Jalapeño) Sun SME1603 1064–1593 V9 / JPS1 2003 1×1=1 0,13 87,5 206 959 52 1,3 64 32 1024 nincs
SPARC64 V (Zeus) Fujitsu 1100–1350 V9 / JPS1 2003 1×1=1 0,13 190 289 269 40 1,2 128 128 2048 --
SPARC64 V+ (Olympus-B) Fujitsu 1650–2160 V9 / JPS1 2004 1×1=1 0,09 400 297 279 65 1 128 128 4096 --
UltraSPARC IV (Jaguar) Sun SME1167 1050–1350 V9 / JPS1 2004 1×2=2 0,13 66 356 1368 108 1,35 64 32 16384 nincs
UltraSPARC IV+ (Panther) Sun SME1167A 1500–2100 V9 / JPS1 2005 1×2=2 0,09 295 336 1368 90 1,1 64 64 2048 32768
UltraSPARC T1 (Niagara) Sun SME1905 1000–1400 V9 / UA 2005 2005 4×8=32 0,09 300 340 1933 72 1,3 8 16 3072 nincs
SPARC64 VI (Olympus-C) Fujitsu 2150–2400 V9 / JPS1 2007 2×2=4 0,09 540 422 -- 120 -- 128×2 128×2 6144 nincs
UltraSPARC T2 (Niagara 2) Sun SME1908A 1000–1600 V9 / UA 2007 2007 8×8=64 0,065 503 342 1831 95 1,1–1,5 8 16 4096 nincs
UltraSPARC T2 Plus (Victoria Falls) Sun SME1910A 1200–1600 V9 / UA 2007 2008 8×8=64 0,065 503 342 1831 - - 8 16 4096 nincs
SPARC64 VII (Jupiter) [10] Fujitsu 2400–2880 V9 / JPS1 2008 2×4=8 0,065 600 445 -- 150 -- 64×4 64×4 6144 nincs
UltraSPARC "RK" (Rock) [11] Sun SME1832 2300 V9 / -- törölve [12] 2×16=32 0,065 ? 396 2326 ? ? 32 32 2048 ?
SPARC64 VIIIfx (Venus) [13][14] Fujitsu 2000 V9 / JPS1 2009 1×8=8 0,045 760 513 1271 58 ? 32×8 32×8 6144 nincs
SPARC T3 (Rainbow Falls) Oracle/Sun 1650 V9 / UA _?_ 2010 8×16=128 0,040 [15] ???? 371 ? 139 ? 8 16 6144 nincs
SPARC64 VII+ (Jupiter-E vagy M3) [16][17] Fujitsu 2667 - 3000 V9 / JPS1 2010 2×4=8 0,065 - - - 160 - 64×4 64×4 12288 nincs
MCST-4R MCSzT (Oroszország) 750 - 1000 V9 2010 1×4=4 0,09 150 115 - 15 1 32 16 2048 nincs
SPARC T4 (Yosemite Falls) [18] Oracle 2850 - 3000 V9 / OSA2011 ? 2011 8×8=64 0,04 855 403 ? 240 ? 16×8 16×8 128×8 4096
SPARC64 IXfx [19][20] Fujitsu 1850 V9 / JPS1 ? 2012 1×16=16 0,04 1870 484 1442 110 ? 32×16 32×16 12288 nincs
SPARC64 X Fujitsu ????-3000 V9 / JPS 2012 2×16=32 0,028 2950 587,5 1500 ? ? 64×16 64×16 24576 nincs
SPARC T5 Oracle 3600 V9 / OSA2011? 2013 8×16=128 0,028 ? ? ? ? ? 16×8 16×8 128×16 8192
SPARC M5 Oracle 3600 V9 / OSA2011? 2013 8×6=48 0,028 ? ? ? ? ? 16×6 16×6 128×6 49152 [21]
név (kódnév) modell órajelfr. (MHz) arch. verzió kiadás éve szálszám [megj 1] processz (µm) tr. szám (millió) lapkaméret (mm²) I/O lábak disszipáció (W) feszültség (V) L1 Dcache (KiB) L1 Icache (KiB) L2 cache (KiB) L3 cache (KiB)

Megjegyzések:

  1. ^ a b Szálak száma magonként × magok száma = összes szál
  2. Különféle SPARC V7 implementációkat gyártott a Fujitsu, LSI Logic, Weitek, Texas Instruments és a Cypress. Egy SPARC V7 processzor általában több külön csipből állt, amik az egészértékű/integer egységet (IU), a lebegőpontos egységet (FPU), a memóriavezérlőt (MMU) és a gyorsítótár-memóriát tartalmazták.
  3. 167 MHz-en
  4. 250 MHz-en
  5. 400 MHz-en
  6. 440 MHz-en
  7. max. 500 MHz-en
  8. 900 MHz-en

Operációs rendszerek[szerkesztés | forrásszöveg szerkesztése]

A SPARC gépek általában SunOS, Solaris vagy OpenSolaris rendszert használnak, de más operációs rendszerek is működnek rajtuk, például NEXTSTEP, RTEMS, FreeBSD, OpenBSD, NetBSD és Linux.

1993-ban az Intergraph bejelentette, hogy portolja a Windows NT-t SPARC-ra.[22], de ezt később visszavonták.

Nyílt forrású megvalósítások[szerkesztés | forrásszöveg szerkesztése]

A a SPARC architektúrának három teljesen nyílt forrású megvalósítása van:

  • LEON – 32 bites, SPARC Version 8 megvalósítás, különösen a helykihasználásra optimalizálva tervezték. A forráskódja VHDL-ben van írva, GPL licensz alatti.
  • OpenSPARC T1 – 2006-ban adták ki, 64 bites, 32-szálas implementáció, megfelel a UltraSPARC Architecture 2005 és a SPARC Version 9 (Level 1) specifikációknak. A forráskódja Verilog-ban készült, több licensz alatt lett kibocsátva; az OpenSPARC T1 forráskód legnagyobb része GPL licensz alá esik, a létező nyílt forrású projektekből származó kód továbbra is a saját licensze alatt marad. A bináris programok a bináris szoftver licenszerződések hatálya alá esnek.
    • S1 – ez egy 64 bites Wishbone-nak megfelelő CPU mag, amely az OpenSPARC T1 tervein alapul. Ez egyetlen UltraSPARC v9 típusú mag, amely 4-utas SMT-re (egyidejű többszálas működésre) képes. A T1-hez hasonlóan erre is a GPL licensz vonatkozik.
  • OpenSPARC T2 – 2008-ban jelent meg, 64 bites, 64-szálas megvalósítás, megfelel az UltraSPARC Architecture 2007 és a SPARC Version 9 (Level 1) specifikációknak. A forráskódja Verilog-ban íródott, többfajta licensz hatálya alá esik, hasonlóan a T1-hez.

A SPARC architektúrának létezik egy teljesen nyílt forrású szimulátora is:

  • RAMP Gold, egy 32 bites, 64-szálas SPARC Version 8 implementáció, amelyet az FPGA-alapú architektúrák szimulációja céljából terveztek. A RAMP Gold forráskódja kb. 36000 sor Systemverilog nyelven, a BSD licencek hatálya alá esik.

Szuperszámítógépek[szerkesztés | forrásszöveg szerkesztése]

2011 júniusában a világ 500 leggyorsabb számítógépe közül csak két szuperszámítógép (az első és a 73-ik) használt SPARC processzorokat, a TOP500 lista alapján.[23]

2011-ben az első helyen a Fujitsu K computer-e állt (a 2011 júniusi és 2011 novemberi listák szerint)[23], 2012-ben a második helyen áll. Ez 88 128 SPARC64 VIIIfx CPU-ból épül fel, mindegyik nyolcmagos, így összesen 705 024 magot tartalmaz – csaknem kétszer annyit, mint a TOP500 bármelyik gépe. A K Computer teljesítménye nagyobb, mint a listában rákövetkező öt rendszeré együttvéve, és ennek a legmagasabb a teljesítmény-energia aránya az összes 2012 előtti szuperszámítógép-rendszer között. A Green500 listán a 6. helyen állt 2011 júniusában, 824.56 MFLOPS/W teljesítményével.[24]

A Tianhe-1A 2011-ben a második, 2012-ben az 5-ik helyen álló rendszer. Több node-ja kínai fejlesztésű OpenSPARC-alapú FeiTeng-1000 processzorokból áll, azonban ezek a node-ok nem vesznek részt a TOP500 alapját képező LINPACK tesztben.[25][26]

A 2012. júniusi TOP500 lista 18. helyén is egy SPARC alapú rendszer áll, a japán Tokiói Egyetem Információtechnológiai Központjában felállított Oakleaf-FX nevű rendszer; ez 1,848 GHz-es SPARC64 IXfx 16C processzorokból áll, mindössze 76800 magot tartalmaz.[27]

2010. december 2-án az Oracle leleplezte a T3-2, T3-4 és M5000 szerverekből álló SPARC SuperCluster rendszerét.[28] A T3-4 szerverekből álló konfiguráció állítólag felülmúlja a HP Integrity Superdome és az IBM Power 780 server rendszereket, 30 249 688 tpmC sebességével.[29] Az Oracle azóta megjelentette a T4-4 jelű SPARC SuperCluster változatot is, azonban ezekkel a rendszerekkel 2012-ben még nem sikerült bekerülnie a TOP500-ba.

Jegyzetek, források[szerkesztés | forrásszöveg szerkesztése]

  1. SPARC Timeline (angol nyelven). SPARC International, 1994-2011
  2. David L. Weaver: OpenSPARC Architecture Generattions (angol nyelven) (pdf) pp. 36. OpenSPARC, 2008. (Hozzáférés: 2012. szeptember 21.)
  3. SPARC: SPARC information (angol nyelven)
  4. [Kerekes]: History of SPARC systems 1987 to 2010 (angol nyelven). SPARC Product Directory, 1996
  5. OpenSPARC T2 (angol nyelven). OpenSPARC. Oracle Corporation. (Hozzáférés: 2012. szeptember 20.)
  6. SPARC64™X: Fujitsu’s New Generation 16 Core Processor for the next generation UNIX servers. Fujitsu, 2012. augusztus 29. (Hozzáférés: 2013. május 19.)
  7. http://gcc.gnu.org/onlinedocs/gcc/SPARC-Options.html "integer multiply and integer divide instructions which exist in SPARC-V8 but not in SPARC-V7." / "SPARC-V7-ből hiányzó egész szorzó és osztó utasítások jelentek meg a SPARC-V8-ban ..."
  8. http://www.osnews.com/story/6136 "The V8 architecture adds some instructions .., including integer divide and multiply."
  9. Weaver, D. L., ed. (1994), The SPARC Architecture Manual, Version 9, Prentice Hall, ISBN 0-13-825001-4, <http://www.sparc.org/standards/SPARCV9.pdf>. Retrieved on 2011-12-06
  10. FX1 Key Features & Specifications, Fujitsu, 2008-02-19, <http://www.fujitsu.com/downloads/PR/2008/20080219-01a.pdf>. Retrieved on 2011-12-06
  11. Tremblay, Marc & Chaudhry, Shailender (2008-02-19), A Third-Generation 65nm 16-Core 32-Thread Plus 32-Scout-Thread CMT SPARC(R) Processor, Sun Microsystems, <http://www.opensparc.net/pubs/preszo/08/RockISSCC08.pdf>. Retrieved on 2011-12-06
  12. Vance, Ashlee (2009-06-15), Sun Is Said to Cancel Big Chip Project, <http://bits.blogs.nytimes.com/2009/06/15/sun-is-said-to-cancel-big-chip-project>. Retrieved on 2010-05-23
  13. Fujitsu shows off SPARC64 VII, 2008-08-28, <http://www.h-online.com/newsticker/news/item/Hot-Chips-Fujitsu-shows-off-SPARC64-VII-737073.html>. Retrieved on 2011-12-06
  14. Barak, Sylvie (2009-05-14), Fujitsu unveils world’s fastest CPU, <http://www.theinquirer.net/inquirer/news/1137342/fujitsu-unveils-world-s-fastest-cpu>. Retrieved on 2011-12-06
  15. Sparc T3 processor, <http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t3-chip-ds-173097.pdf>. Retrieved on 2011-12-06
  16. Morgan, Timothy Prickett (2010-12-03), Ellison: Sparc T4 due next year, <http://www.channelregister.co.uk/2010/12/03/oracle_sparct4_fujitsu_sparc64/>. Retrieved on 2011-12-06
  17. SPARC Enterprise M-series Servers Architecture, 2011, <http://www.fujitsu.com/downloads/SPARCE/whitepapers/sparc-architecture-m-series-en.pdf>
  18. Morgan, Timothy Prickett (2011-08-22), Oracle's Sparc T4 chip, <http://www.theregister.co.uk/2011/08/22/oracle_sparc_t4_hot_chips/>. Retrieved on 2011-12-06
  19. Morgan, Timothy Prickett (2011-11-21), Fujitsu parades 16-core Sparc64 super stunner, <http://www.theregister.co.uk/2011/11/21/fujitsu_sparc64_ixfx_fx10_details>. Retrieved on 2011-12-08
  20. Fujitsu Launches PRIMEHPC FX10 Supercomputer, 2011-11-07, <http://www.fujitsu.com/global/news/pr/archives/month/2011/20111107-01.html>. Retrieved on 2012-02-03
  21. SPARC M5-32 Server / Overview (angol nyelven). Oracle, 2012. április 1. (Hozzáférés: 2013. május 19.) „6-core, 8 threads per core, SPARC M5 processor with extra large 48 MB shared L3 cache for exceptional per-core performance and ... / SPARC M5: 6 mag, 8 szál magonként, extranagy 48 MB-os osztott L3 cache ...”
  22. McLaughlin, John (1993-07-07), "Intergraph to Port Windows NT to SPARC", The Florida SunFlash 55 (11), <http://ftp.lanet.lv/ftp/sun-info/sunflash/1993/Jul/55.11-Sun-Intergraph:-SPARC-and-Windows-NT>. Retrieved on 2011-12-06
  23. ^ a b TOP500 List (1-100), 2011, <http://top500.org/list/2011/06/100>. Retrieved on 2011-12-06
  24. The Green500 List, 2011, <http://www.green500.org/lists/2011/06/top/list.php>
  25. Keane, Andy, Tesla Supercomputing, <http://www.nvidia.com/content/mp4/sc-2010/theater/keane-sc10.mp4>. Retrieved on 2011-12-06
  26. U.S. says China building 'entirely indigenous' supercomputer, by Patrick Thibodeau Computerworld, November 4, 2010 [1]
  27. TOP500: TOP500 List - June 2012 (1-100). TOP500.org, 2012. 6
  28. Oracle Announces New SPARC Supercluster, 2010-12-02, <http://www.oracle.com/us/corporate/press/192208>. Retrieved on 2011-12-06
  29. Oracle Beats IBM with Nearly Three Times Better Throughput, 2010-12-02, <http://www.oracle.com/us/corporate/press/192165>. Retrieved on 2011-12-06

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

Kapcsolódó szócikkek[szerkesztés | forrásszöveg szerkesztése]

  • ERC32 – a SPARC V7 specifikáción alapul
  • FeiTeng-1000 – kínai nyolcmagos SPARC-alapú processzor
  • MCST-4R – orosz négymagos mikroprocesszor, a SPARC V9 specifikáción alapul
  • OpenSPARC – az UltraSPARC T1 kialakításon alapuló nyílt forrású projekt
  • Rock processor – többmagos, többszálas mikroprocesszor, amelyben nagy hangsúlyt kapott a lebegőpontos teljesítmény
  • Ross Technology, Inc. – SPARC processzor tervező és készítő cég az 1980-as és 1990-es években
  • Sparcle – módosított SPARC, multiprocesszoros támogatással, a MIT Alewife projektjében használták
  • UltraSPARC T1 – A Sun első többmagos és többszálas processzora (kódneve "Niagara")
  • UltraSPARC T2 – a T1 utód-tervezete
  • SPARC T3 – az UltraSPARC T2 után következő SPARC generáció

További információk[szerkesztés | forrásszöveg szerkesztése]

BSD a SPARC-on[szerkesztés | forrásszöveg szerkesztése]

Linux disztribúciók[szerkesztés | forrásszöveg szerkesztése]