Hagen Kleinert
Hagen Kleinert | |
Hagen Kleinert, A kép 2006-ban készült | |
Született | 1941. június 15. (83 éves)[1] Twardogóra |
Állampolgársága | német |
Foglalkozása |
|
Iskolái |
|
Kitüntetései |
|
Sablon • Wikidata • Segítség |
Hagen Michael Kleinert (Festenberg, 1941. június 15. –) német fizikus és egyetemi professzor a berlini Freie Universität egyetem elméleti fizika tanszékén. 2008-ban Max-Born-díjjal tüntették ki.
Egyetemi tanulmányait 1960 és 1963 között a Hannoveri Műszaki Főiskolán végezte. Ezt követően az Amerikai Egyesült Államok több egyetemének hallgatója volt. 1967-ben a Colorado at Boulder egyetemen doktorált, ahol többek között az Ősrobbanás elmélete egyik megalapozójának, George Gamownak a diákja volt. 1969 óta a Freie Universität professzora.
Tudományos eredmények
[szerkesztés]Richard Feynman együttműködésével egy közelítő eljárást dolgozott ki a Pálya-Integrálok kiszámításához.[3] Ez a matematikai módszer, aminek segítségével divergens függvénysorokat konvergens függvénysorokká lehet átalakítani, az utóbbi 15 évben kibővült. E módszer a másodrendű fázisátalakulások közelében tapasztalható kritikus exponensek mostanáig (2008) ismert legpontosabb elméletének az alapja.[4] Főleg a szuperfolyékony hélium esetében volt az elméletnek különös jelentősége, mivel egy műholdkísérlet eredményeit pontosan megjósolta.[5]
1973-ban Hagen Kleinert a kvark-térelmélet segítségével megmagyarázta[6] az N. Cabibbo, L. Horwitz és Júvál Neemán-által feltételezett Regge-csatolások algebráját.[7]
Az elmélete a kollektív kvantumterekről[8] és a kvarkelmélet hadronizálásáról[9] számos kutatások alapjává vált a kondenzált anyagok fizikája valamint a mag- és részecskefizika terén.
1978-ban egy nyári iskola folyamán Erice-ben az atommag szuperszimmetriáját megjósolta,[10] amit időközben kísérletileg is sikerült bebizonyítani.[11]
1979-ben H. Duru együttműködésével sikerült elsőként a hidrogénatom pályaintegrálját megoldania.[12][13]
1981-ben K. Maki együttműködésével a kvázi-kristályok ikozahedrális fázisszerkezetét derítette fel.[14] 1982-ben megjósolta az I- és II-típusú szupervezetők közötti trikritikus pontot,[15] amit a Monte-Carlo-szimulációk is megerősítettek.[16] Ez egy új rendetlenség-térelmélet alapjává vált, ami a Gauge Fields in Condensed Matter két kötetében van kidolgozva. A fluktuáló örvény- vagy defektusvonalak elemi gerjesztések segítségével vannak leírva. Ez egy duális verziója a fázis átalakulás Landau-féle rend-térelméletének .
1986-ban bevezette a görbületi-merevséget a húrelmélet terén,[17] ahol alapesetben csak a feszültségek játszanak szerepet. Ezzel jelentősen helyesbítette a húrok fizikai tulajdonságait. Mivel hozzávetőleg egy időben az orosz fizikus A. Polyakov egy hasonló elméletet javasolt, az eredmény Polyakov-Kleinert-Stringnek is lett elnevezve.
A koordinátainvarianciából kiindulva, Kleinert a disztribúciók elméletének a kibővítését vezette le, amelyikben (a matematikai disztibúció elméletben) nem csak lineáris kombinációk, hanem disztribúciószorzatok is egyértelműen definiálva vannak.[18] A koordinátainvariancia a Pálya-integrálisok szükséges tulajdonsága amely által ezek a kvantummechanika Schrödinger-képével ekvivalenssé válnak.
Könyvek
[szerkesztés]- Gauge Fields in Condensed Matter, Vol. I, "SUPERFLOW AND VORTEX LINES; Disorder Fields, Phase Transitions,", pp. 1–742, World Scientific (Singapur, 1989); Paperback ISBN 9971-5-0210-0 (online olvasható: itt )
- Gauge Fields in Condensed Matter, Vol. II, "STRESSES AND DEFECTS; Differential Geometry, Crystal Melting", pp. 743–1456, World Scientific (Singapur, 1989); Paperback ISBN 9971-5-0210-0 (online olvasható: itt)
- Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, World Scientific, Singapur, 1990
- Pfadintegrale in Quantenmechanik, Statistik und Polymerphysik. Mannheim, 1993
- Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, 2. Auflage, World Scientific, Singapur, 1995
- Critical Properties of φ4-Theories, World Scientific (Singapur, 2001); Paperback ISBN 981-02-4658-7 (online olvasható: itt) (Verena Schulte-Frohlinde együttműködésével)
- Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5. Auflage, World Scientific (Singapore, 2006) (online olvasható: itt)
- Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation, World Scientific (Singapore, 2008) (online olvasható: itt)
- Proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity, World Scientific (Singapore, 2008) (R.T. Jantzen együttműködésével)
Jegyzetek
[szerkesztés]- ↑ Integrált katalógustár (német nyelven). (Hozzáférés: 2014. április 9.)
- ↑ Born medal recipients. Institute of Physics. (Hozzáférés: 2018. augusztus 23.)
- ↑ R. P. Feynman, H. Kleinert (1986). „Effective classical partition functions”. Physical Review A 34, 5080 - 5084. o. DOI:10.1103/PhysRevA.34.5080.
- ↑ H. Kleinert (1999). „Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions”. Physical Review D 60, 85001-850016. o. DOI:10.1103/PhysRevD.60.085001.
- ↑ Lipa J.A. (2003). „Specific heat of liquid helium in zero gravity very near the lambda point”. Physical Review B 68, 174518. o. DOI:10.1103/PhysRevB.68.174518.
- ↑ Kleinert H. (1973). „Bilocal Form Factors and Regge Couplings”. Nucl. Physics B65, 77-111. o. DOI:10.1016/0550-3213(73)90276-9.
- ↑ N. Cabibbo, L. Horwitz, Y. Ne’eman (1966). „The Algebra of Scalar and Vector Vertex Strengths in Regge Residues”. Physics Letters 22, number 3, 336-340. o.
- ↑ Kleinert H. (1978). „Collective Quantum Fields”. Fortschritte der Physik 36, 565-671. o.
- ↑ Kleinert H., Lectures presented at the Erice Summer Institute 1976 (1978). „On the Hadronization of Quark Theories”. Understanding the Fundamental Constituents of Matter, Plenum Press, New York, 1978, A. Zichichi ed., 289-390. o.
- ↑ Ferrara S., 1978 Erice Lecture publ. in (1980). „The New Aspects of Subnuclear Physics”. Plenum Press, N.Y., Zichichi, A. ed., 40. o.
- ↑ Metz A., Jolie J., Graw G., Hertenberger R., Gröger J., Günther C., Warr N., Eisermann Y. (1999). „Evidence for the Existence of Supersymmetry in Atomic Nuclei”. Phys. Rev. Lett. 83, 1542. o. [2020. március 12-i dátummal az eredetiből archiválva]. DOI:10.1103/PhysRevLett.83.1542. (Hozzáférés: 2008. augusztus 29.)
- ↑ Duru I.H., Kleinert H. (1979). „Solution of the path integral for the H-atom”. Physics Letters B 84 (2), 185-188. o. DOI:10.1016/0370-2693(79)90280-6.
- ↑ Duru I.H., Kleinert H. (1982). „Quantum Mechanics of H-Atom from Path Integrals”. Fortschr. Phys 30 (2), 401-435.. o.
- ↑ Kleinert H., Maki K. (1981). „Lattice Textures in Cholesteric Liquid Crystals”. Fortschritte der Physik 29, 219-259. o.
- ↑ Kleinert H. (1982). „Disorder Version of the Abelian Higgs Model and the Order of the Superconductive Phase Transition”. Lett. Nuovo Cimento 35, 405-412. o.
- ↑ Hove J., Mo S., Sudbo A. (2002). „Vortex interactions and thermally induced crossover from type-I to type-II superconductivity”. Phys. Rev. B 66, 064524. o. DOI:10.1103/PhysRevB.66.064524.
- ↑ Kleinert H. (1989). „The Membrane Properties of Condensing Strings”. Phys. Lett. B 174, 335. o. DOI:10.1016/0370-2693(86)91111-1. [halott link]
- ↑ Kleinert H., Chervyakov A. (2001). „Rules for integrals over products of distributions from coordinate independence of path integrals”. Europ. Phys. J. C 19, 743--747. o. DOI:10.1007/s100520100600.
Fordítás
[szerkesztés]- Ez a szócikk részben vagy egészben a Hagen Kleinert című német Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.