Lapultság
Megjelenés
Az X valószínűségi változó lapultsága vagy lapultsági mutatója (esetenként csúcsossága vagy csúcsossági együtthatója) lényegében azt fogalmazza meg, hogy a valószínűségi változó sűrűségfüggvényének "csúcsossága" vagy "lapossága" hogyan viszonyul a normális eloszláséhoz. A precíz matematikai megfogalmazás a következő: az m várható értékű X valószínűségi változó lapultsága az
kifejezés értékével egyenlő, ahol E[·] a várható értéket jelöli. Úgy is fogalmazhatjuk, hogy a lapultság a negyedik centrális momentum és a variancia négyzetének a hányadosánál pont hárommal kisebb szám.
A lapultságot a magyar szakirodalom nem egységesen jelöli: időnként β2-vel, máskor γ2-vel.
Szemléletesen úgy jellemezhetjük ezt a mutatót, hogy
- normális eloszlás esetén β2 = 0
- normális eloszlás "haranggörbe"-szerű sűrűségfüggvényénél "csúcsosabb" sűrűségfüggvényű eloszlások esetén β2 > 0,
- annál "laposabb" sűrűségfüggvényű eloszlások esetén β2 < 0.
Források
[szerkesztés]- Fazekas I. (szerk.) (2000): Bevezetés a matematikai statisztikába. Kossuth Egyetemi Kiadó, Debrecen.
- Hunyadi L. - Vita L. (2006), Statisztika közgazdászoknak, KSH, ISBN 963-215-742-7
- Michelberger P. – Szeidl L. – Várlaki P. (2001): Alkalmazott folyamatstatisztika és idősor-analízis. Typotex Kiadó, Budapest.
- Vargha A. (2000): Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal. Pólya Kiadó, Budapest.