Centrális momentum

A Wikipédiából, a szabad enciklopédiából

Egy valószínűségi változó centrális momentumai vagy centrált momentumai több, a változó eloszlását jellemző számértéket is takarnak. Általánosan az X valószínűségi változó k-adik centrális momentuma bármely k pozitív egész szám esetén az E((XE(X))k) által felvett értékként határozható meg (feltéve, hogy ez az érték létezik), ahol E(X) az X várható értékét jelöli.

Az X valószínűségi változó k-adik centrális momentumának jelölését tekintve a szakirodalom nem egységes. Sok esetben – a várható értéktől, szórástól, ferdeségtől, vagy lapultságtól eltérően – nem szoktak külön jelölést bevezetni, hanem kiírják az E((XE(X))k)-t. Bizonyos – főként régebbi – könyvekben találkozhatunk a μk = E((XE(X))k) jelöléssel, míg más könyvekben ugyanezzel a momentumot jelölik, s mk-val jelölik a centrális momentumot.

További momentumok[szerkesztés | forrásszöveg szerkesztése]

A valószínűség-számításban és a matematikai statisztikában más momentumok is előfordulnak, ezek közül a legfontosabbak:

Megjegyzések[szerkesztés | forrásszöveg szerkesztése]

  • A k-adik centrális momentum kifejezés helyett szokás k-ad rendű centrális momentumot is használni.
  • Látható, hogy az második centrális momentum azonos a szórásnégyzettel, vagyis a centrális momentum tekinthető a szórásnégyzet átalánosításának is.

Források[szerkesztés | forrásszöveg szerkesztése]

  • Bognár J.-né – Mogyoródi J. – Prékopa A. – Rényi A. – Szász D. (2001): Valószínűségszámítási feladatgyűjtemény. Typotex Kiadó, Budapest.
  • Fazekas I. (szerk.) (2000): Bevezetés a matematikai statisztikába. Kossuth Egyetemi Kiadó, Debrecen.
  • Medgyessy P. – Takács L. (1973): Valószínűségszámítás. Tankönyvkiadó, Budapest.
  • Michelberger P. – Szeidl L. – Várlaki P. (2001): Alkalmazott folyamatstatisztika és idősor-analízis. Typotex Kiadó, Budapest.