„Reductio ad absurdum” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[nem ellenőrzött változat][nem ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Új oldal, tartalma: „{{lektor}} {{forrás}} A '''reductio ad absurdum''' (latin: visszavezetés az abszurdra) az érvelés egy formája, amely során az érvelő a vita ke...”
 
aNincs szerkesztési összefoglaló
1. sor: 1. sor:
{{lektor}}
{{lektor}}
{{forrás}}
{{nincs forrás}}


A '''reductio ad absurdum''' ([[latin nyelv|latin]]: visszavezetés az abszurdra) az [[érvelés]] egy formája, amely során az érvelő a vita kedvéért elfogad egy állítást, megmutatja, hogy valamilyen képtelenség következik belőle, és ebből arra jut, hogy az állítás mégse volt igaz.
A '''reductio ad absurdum''' ([[latin nyelv|latin]]: visszavezetés az abszurdra) az [[érvelés]] egy formája, amely során az érvelő a vita kedvéért elfogad egy állítást, megmutatja, hogy valamilyen képtelenség következik belőle, és ebből arra jut, hogy az állítás mégse volt igaz.

A lap 2007. november 12., 18:27-kori változata

A reductio ad absurdum (latin: visszavezetés az abszurdra) az érvelés egy formája, amely során az érvelő a vita kedvéért elfogad egy állítást, megmutatja, hogy valamilyen képtelenség következik belőle, és ebből arra jut, hogy az állítás mégse volt igaz.

Logikai megfelelője a modus tollens: , azaz ha P-ből következik Q, és Q nem igaz, akkor P sem igaz. A matematikai logikában az ellentmondásmentesség és bizonyos esetekben a kizárt harmadik axiómájának kell teljesülnie, hogy ez a fajta következtetés alkalmazható legyen. Az ilyen matematikai bizonyítások végét gyakran a villám (U+21AF: ↯) szimbólummal jelölik.

Retorikailag hasonló, de logikailag nem helyes érvelés a reductio ad ridiculum, amikor egy olyan következtetést vezetnek le az állításból, ami nem mindenkinek, hanem csak a hallgatóság számára abszurd.

Példák

  • Klasszikus példa Eukildesz bizonyítása a prímek végtelenségére. Tételezzük fel, hogy a természetes számok között csak véges sok prím van, és jelöljük őket -nel. Ekkor a szám nem lehet prím, mert minden prímnél nagyobb, ugyanakkor összetett sem lehet, mert mindegyik prímmel 1 maradékot ad. Ellentmondásra jutottunk, így a prímek száma nem lehet véges.
  • Egy másik klasszikus, a görög matematikából származó példa a gyök kettő irracionalitása: tegyük fel, hogy a gyök kettő racionális, azaz vannak olyan a és b egész számok, hogy . Ekkor , azaz , ami ellentmondás, mert a 2 az egyik oldalon páros, a másikon páratlan kitevővel szerepel.
  • Egy kocka nem bontható fel véges sok, páronként különböző kisebb kockára. Ha ugyanis felbontható lenne, akkor az alsó lapján a legkisebb kockát véve, annak csupa önmagánál nagyobb szomszédja lenne, így a rajta lévő kocka sem lehetne nagyobb nála, ami ellentmond annak, hogy a legkisebb kockát vettük.

A fenti példák mind valaminek a nemlétét bizonyítják. Ha elfogadjuk a kizárt harmadik axiómáját, akkor valaminek a léte is bizonyítható hasonló módon; a fixponttétel példa egy ilyen bizonyításra. Egyes matematikai iskolák, például az intuicionizmus, elvetik a kizárt harmadik elvét, és vele a reductio ad absurdumon alapuló egzisztenciabizonyításokat is.

Lásd még