Majoráns kritérium

A Wikipédiából, a szabad enciklopédiából

A Cauchy-kritérium megadja a numerikus sorok konvergenciájának pontos feltételét, azonban a gyakorlatban ritkán használható, mert nehéz ellenőrizni. Ezért szükség van egyszerűbben ellenőrizhető kritériumokra is. Ilyen a majoráns kritérium is.

Majoráns kritérium: Tegyük fel, hogy a és végtelen sorok tagjaira minden elég nagy n esetén fennáll . Ha a sor konvergens, akkor abszolút konvergens.

Bizonyítás: Véges sok tag megváltoztatása nem befolyásolja a sorok konvergenciáját, ezért feltehetjük, hogy minden n-re teljesül. Ebből következik, hogy a sor részletösszegei nem nagyobbak megfelelő részletösszegeinél. Az utóbbiak sorozata felülről korlátos, hiszen konvergens. Így a sor részletösszegeinek sorozata is felülről korlátos, tehát a monoton konvergencia tétel szerint a sor részösszegeinek sorozata konvergens, vagyis a sor definíció szerint konvergens.

Lásd még[szerkesztés]

Irodalom[szerkesztés]