Vasmag

A Wikipédiából, a szabad enciklopédiából

A vasmag kulcsszerepet játszó alkatrésze sok elektromágneses eszköznek, így például az elektromágneseknek, transzformátoroknak, tekercseknek vagy induktivitásoknak, és a villamos forgógépeknek is, noha utóbbi esetben általában vastestnek nevezik. A vasmag elnevezése ellenére nem feltétlenül vasból készül, noha leggyakrabban ténylegesen vas anyagú.

Legfontosabb szerepe, hogy az ilyen eszközök gerjesztés igényét csökkentse, azaz az eszközben egy adott árammal vasmag alkalmazása mellett nagyobb mágneses indukciót hozhatunk létre. További fontos szerepe a mágneses fluxus vezetése, ami által árnyékolási funkciót is elláthat.

Ezeket a feladatokat akkor képes ellátni, ha olyan anyagból készül, amely permeabilitása nagy például ferrit, vas, nikkel, kobalt és egyéb ferromágneses anyagok.

Az elektromágneses eszközök működése szempontjából a vasmag következő jellemzői rendkívül fontosak:

  • a vasmag geometriája (keresztmetszetek, hosszok)
  • a légrés mérete (amennyiben van)
  • a vasmag mágneses tulajdonságai főként a permeabilitás, a mágnesezési görbe hiszterézis területének nagysága, és a gazdaságosan elérhető maximális mágneses indukció
  • a működési hőmérséklet (a mágneses tulajdonságok ugyanis hőmérsékletfüggőek)
  • a villamos vezetőképesség (Ez utóbbi váltakozóáramú felhasználásnál fontos, hiszen ekkor a változó mágneses fluxus a vasmagban is indukál feszültséget, ami az ellenállástól függő nagyságú áramokat okoz (örvényáramok) Az örvényáramok csökkenthetők a vasmag lemezelésével, valamint nagy ohmos ellenállású anyagok használatával.

Elterjedten használt vasmagtípusok[szerkesztés | forrásszöveg szerkesztése]

Körkeresztmetszetű egyenes rúd[szerkesztés | forrásszöveg szerkesztése]

Leggyakrabban ferritből vagy hasonló anyagból készül, és rádiókban használják egy tekercs induktivitásának finomhangolására. A vasmag a tekercs belsejében finoman mozgatható, és ezáltal változtatható annak induktivitása.

A nagy permeabilitású vasmag jelenléte növeli az induktivitást, de a mágneses tér a rúd két végén kilépve a levegőn keresztül záródik. A levegőn át záródó rész biztosítja, hogy az induktivitás lineáris, telítődés nem fordul elő üzemi áramoknál. Az effajta tekercseknél a rúd két végén elektromágneses sugárzás lép fel, ami elektromágneses interferenciát okoz. Ez bizonyos esetekben problémát jelent.

"I" vasmag[szerkesztés | forrásszöveg szerkesztése]

Négyszögkeresztmetszetű rúd, önmagában ritkán használják.

"C" vagy "U" vasmag[szerkesztés | forrásszöveg szerkesztése]

C és U alakú vasmagok segítségével könnyen készíthető zárt vasmag egy további I, C vagy U' mag felhasználásával.

"E" vasmag[szerkesztés | forrásszöveg szerkesztése]

Az E alakú vasmag az előzőekhez képest szimmetrikusabb megoldás a zárt mágneses kör szempontjából. Legtöbbször a tekercset a középső oszlop köré tekerik, amely keresztmetszete a szélső oszlopokénak kétszerese.

Zárt vasmag „E" és „I" vasmag felhasználásával[szerkesztés | forrásszöveg szerkesztése]

Vaslemezekből „E" és „I" alakú darabok kisajtolásával készül. Az „I" magot az „E" nyitott végére helyezik. A tekercset vagy tekercseket bármely oszlopra rá lehet tekerni azonban a szimmetria miatt a középsőre szokás. Ezt a fajta magot igen gyakran használják transzformátorok, autotranszformátorok és induktivitások készítésére. Induktivitások esetén néha célszerű a vasmag telítésének elkerülése érdekében egy kis légrést hagyni, ekkor általában az „E" mag középső oszlopa rövidebb, mint a két szélső.


Induktivitás készítése két ER magból, egy műanyag csévetest és két klipsz. A csévetest tűs csatlakozókkal rendelkezik, hogy nyomtatott áramköri lemezbe lehessen forrasztani.
Az előző ábra robbantva

Zárt vasmag „E" vasmag párból[szerkesztés | forrásszöveg szerkesztése]

Az „I" és „E" maghoz hasonlóan két „E" magból is készíthető zárt vasmag. Szintén az előbbiekhez hasonlóan lehetőség van légrés beépítésére.


'RM' típusú fazék mag

Fazék vasmag[szerkesztés | forrásszöveg szerkesztése]

Általában ferritből vagy hasonló anyagból készül. Induktivitások és kis transzformátorok készítésére használják. A fazékmag alakja kör egy belső oszloppal, és így a mag teljesen körbezárja a tekercset. Általában a vasmag két azonos félből készül. Ez a vasmagtípus eredményezi a legjobb árnyékoló hatást, és így az így készült eszközök okozzák a legkisebb eletromágneses interferenciát.

Toroid vasmag

Toroid vasmag[szerkesztés | forrásszöveg szerkesztése]

Az ilyen vasmagok alakja toroid, azaz egy fánkhoz hasonló. A tekercset vagy tekercseket erre tekerik fel a középső lyukon átfűzve. Az ideális tekercs menetei egyenletesen oszlanak el a toroid kerülete mentén. Ebben az esetben a mágneses fluxus a vasmag nélkül is főként a tekercs belsejében záródna, így ilyen konstrukcióval érhető el a legkisebb szórt fluxus. Ezáltal nagyon jó hatásfokú, kis elektromágneses interferenciával rendelkező transzformátor vagy induktivitás hozható létre. Emiatt ez a megoldás nagyon elterjedten használt hi-fi erősítőkben, ahol az előbbi tulajdonságok igen fontosak. Ugyanakkor a tekercs elkészítése ebben az esetben bonyolultabb, mint a több részből összerakott magok esetében, és különleges gépet igényel.

Sík (planáris) 'E' vasmag

Sík vagy planáris vasmag[szerkesztés | forrásszöveg szerkesztése]

Egy sík vasmag két mágnesezhető anyagból készült lapból áll. Egyiket a tekercs alatt, másikat a tekercs felett helyezik el. Tipikusan nyomtatott áramköri tekercseléssel használják. Ez a konstrukció tömeggyártásra kiválóan alkalmas, nagy teljesítménysűrűséget tesz lehetővé kedvező költségek mellett. Árnyékolási szempontból nem annyira ideális, mint a fazék vasmag vagy a toroid vasmag, viszont gyártása jóval olcsóbb.

Planáris induktivitás
Robantott ábra, amely mutatja a nyomtatott áramköri lemezen elhelyezkedő spirális tekercset

Veszteségek[szerkesztés | forrásszöveg szerkesztése]

A vasmagban ébredő veszteségeket nevezik az elektrotechnikában vasveszteségnek. Ez a veszteség több komponensből tevődik össze, amelyek különböző fizikai jelenségekből származnak. Két legfontosabb komponense a hiszterézisveszteség és az örvényáramú veszteség. Ezeken kívül létezik még egy a ferromágneses anyag domén falainak mozgásából adódó veszteség komponens is, amellyel azonban a mérnöki gyakorlatban általában külön nem számolnak.

Hiszterézis veszteség[szerkesztés | forrásszöveg szerkesztése]

A vasmagként használt ferromágneses anyagok mágnesezési görbéje (B(H) görbe) hiszterézises jellegű, a hiszterézis hurok területe arányos az egységnyi tömegű anyagban egy átmágnesezési ciklus alatt elveszett energiával [J/kg]. A hurok területe a telítésig jó közelítéssel a mágneses indukció maximumának négyzetével arányos. Az időegység alatt történő átmágnesezési ciklusok számát ciklusszámot a frekvencia adja, amivel így a hiszterézis veszteség egyenesen arányos. Értelemszerűen a vasmag köré csévélt tekercs vagy tekercsek egyenárammal történő táplálása esetén a frekvencia nulla, átmágneseződés nem történik, így hiszterézis veszteség sincs. A mérnöki gyakorlatban egy anyag hiszterézis veszteségét egy jellemző frekvencia és maximum mágneses indukcióra szokás megadni például az alábbiak szerint:

 {v_{ha}=1,4\frac{W}{kg}} @ f_{a}=50Hz,B_{a}=1T

Más frekvenciaértékre és maximális indukcióértékre a veszteségi szám az alábbiak szerint számítható át:

 v_{h}=v_{ha}\frac{f}{f_{a}}*\frac{B*B}{B_{a}*B_{a}}

A veszteség nagysága a mágneses indukció frekvenciáján és maximumán kívül a jelalaktól is függ, az előbbiek szinuszos változásra vonatkoznak. A szinuszénál meredekebb átmenettel rendelkező jelalak esetén (pl. négyszög vagy háromszög jel) a veszteség nagyobb lesz.

Örvényáramú veszteségek[szerkesztés | forrásszöveg szerkesztése]

A vasmagban indukálódó feszültség által keltett áramok is veszteséget okoznak, ezeket örvényáramú veszteségnek nevezik, mivel az így kialakuló áramok örvényekként veszik körbe a vasmagban váltakozó fluxust. Minél nagyobb a maganyag villamos ellenállása annál kisebb lesz a veszteség (fordított arányosság). Az örvényáramú veszteséget lemezeléssel lehet csökkenteni. A lemezhatárokat az áramokra merőlegesen kell elhelyezni.

A hiszterézis veszteséghez hasonlóan a mérnöki gyakorlatban az örvényáramú veszteséget is egy jellemző frekvencia és maximális indukció értékre adják meg. Az örvényáramú veszteségek azonban a hiszterézis veszteségtől eltérően a maximális indukcióval és a frekvenciával is négyzetesen arányos. Megadása és átszámítása például:

 {v_{oa}=0,9\frac{W}{kg}} @ f_{a}=50Hz,B_{a}=1T
 v_{o}=v_{oa}\frac{f*f}{f_{a}*f_{a}}*\frac{B*B}{B_{a}*B_{a}}

Doménfal mozgás[szerkesztés | forrásszöveg szerkesztése]

A változó mágneses tér hatására a ferromágneses anyagokban található domének határai kismértékben elmozdulnak. Egyes domének megnőnek, míg mások összezsugorodnak, és e ciklikus mozgás energiaveszteséggel (az anyag melegedésével) jár. A doménfalak mozgása által okozott veszteségi teljesítmény a frekvencia első, a mágneses indukció másfeledik hatványával arányos.

Veszteségi szám[szerkesztés | forrásszöveg szerkesztése]

Egy maganyag veszteségi száma adott frekvenciára és maximális indukcióra vonatkoztatva a hiszterézis veszteségi szám és az örvényáramú veszteségi szám összege. Sok esetben a gyártók csak ezt adják meg, de megadják 50 Hz-re és 60 Hz-re is. Ekkor a frekvenciafüggés különbségeit kihasználva a két érték alapján meghatározható az örvényáramú és a hiszterézis veszteségi szám.


Lásd még[szerkesztés | forrásszöveg szerkesztése]

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

Külső hivatkozások[szerkesztés | forrásszöveg szerkesztése]