Szakítószilárdság

A Wikipédiából, a szabad enciklopédiából
Kis széntartalmú szénacél szakítódiagramja
1. Szakítószilárdság, Rm
2. Folyáshatár, Re
3. Szakadás
4. Felkeményedés
5. Kontrakció (keresztmetszet összehúzódás)
Aluminium szakítódiagramja
1. Szakítószilárdság, Rm
2. 0,2%-os határ, R0,2
3. Arányossági határ
4. Szakadás
5. 0,2% fajlagos nyúlás
Különleges rideg anyag szakítódiagramja
1. Szakítószilárdság, Rm
2. Szakadás
Valódi és mért feszültség

A szakítószilárdság, σm , Rm egy kötél, huzal, tartógerenda, vagy más hasonló szerkezeti elem elszakításához szükséges mechanikai feszültség. A szakítószilárdság az anyagnak csak az állandó terheléssel szembeni szilárdságára ad felvilágosítást, dinamikus igénybevételt csak jóval kisebb feszültségnél bír ki az anyag. A szakítószilárdság a hőmérséklet függvényében változik (általában csökken), magasabb hőmérsékleten állandó terhelés alatt az anyag állandóan növekvő alakváltozást szenved (tartósfolyás).

Kifejtés[szerkesztés]

A szakítószilárdság megállapítására az anyagból szabvány szerint elkészített próbatesten statikus szakítóvizsgálatot végeznek, ami azt jelenti, hogy lassan növelik a húzóerőt és közben a gép felveszi a feszültség-alakváltozás diagramját. Ezt szakítódiagramnak nevezik. Az anyag tönkremenetele többféleképpen értelmezhető.

Az anyagok állandó terhelés következtében végbemenő tönkremenetelénél három fontos feszültséget kell figyelembe venni:

  • Folyáshatár (Re): az a feszültség, melyet az anyag maradó alakváltozás nélkül elvisel. Ez a pont nem mindig pontosan meghatározható, ezért helyette némely anyagnál azt a feszültséget tekintik folyáshatárnak, melynél a maradó alakváltozás 0,2%.
  • Szakítószilárdság (Rm): az anyag által törés nélkül kibírt legnagyobb feszültség
  • Szakadás: A szakítódiagramról leolvasható feszültség, ahol az anyag elszakad.

A szakítószilárdság a mérnöki tudományok fontos fogalma, különösen az anyagtudomány, a gépészet és a szerkezetépítés területén.

A fémek, közöttük az acél is, a húzóerő hatására rugalmasan megnyúlnak, mindaddig, amíg a bennük ébredő feszültség a folyáshatárt el nem éri. A hosszirányú nyúlással egyidejűleg a próbatest keresztmetszete csökken (kontrakció). Ha a rugalmas tartományban megszüntetik a terhelést, az anyag felveszi eredeti alakját. A rugalmas szakaszban a szakítógörbe meredeksége a rugalmassági modulussal egyenlő. A folyáshatárt túlhaladva szénacéloknál a növekvő alakváltozásnál a húzóerő kismértékű csökkenése is tapasztalható, melynek oka a szénatomok és diszlokációk egymásra hatásával magyarázható. Hidegen alakított és ötvözött acéloknál ilyen jelenség nem lép fel. A legtöbb fémnél a folyáshatár ilyen világosan nem mutatkozik meg.

A folyáshatár alatt minden alakváltozás visszafordítható. A folyáshatáron túl az anyag maradó alakváltozást szenved (esetünkben megnyúlást). Ez pontosabban úgy történik, hogy leterheléskor a szakítógörbe a rugalmas szakasszal párhuzamosan halad, a megfolyatott anyag úgy fog a továbbiakban viselkedni, mintha folyáshatára magasabb értéken lenne, az anyag "felkeményedik".

Az anyagot tovább terhelve a feszültség tovább nő egészen a legnagyobb feszültség pontjáig. Ekkor a próbatestek egy része egy ponton elvékonyodik, ami a feszültség esésével jár további megnyúlás mellett, majd egy ponton a próbatest elszakad. A szakítódiagramon leolvasható legnagyobb feszültség a szakítószilárdság.

A szakítódiagramot úgy ábrázolják, hogy a szakítógépen mérhető húzóerőt mindig a próbatest eredeti keresztmetszetével osztják el. A valódi feszültség ennél az értéknél mindig nagyobb, hiszen terhelés alatt a keresztmetszet csökken (kontrahál). A tényleges keresztmetszetekkel számított valódi feszültség függvénye monoton nő, de ezt nem szokták ábrázolni, mivel a keresztmetszet mérése nehézkes, másrészt az eredeti keresztmetszettel számított szakítószilárdság a valóságosnál kisebb értéket ad, így a mérnöki számítások biztonságát növeli.

A legtöbb anyagnak nincs jól látható folyáshatára. Ilyenkor a 0,2%-os határt határozzák meg, és ezt tekintik folyáshatárnak. A 0,2%-os határ az a feszültség, melynél a próbatest 0,2% maradó alakváltozást szenved. Ezt a szakítódiagramból úgy lehet meghatározni, hogy felrajzolják a 0,2% fajlagos nyúlást a vízszintes tengelyre, majd a diagram rugalmas szakaszának egyenesével e ponton keresztül párhuzamost húznak. Ahol az egyenes metszi a szakítógörbét, leolvassák a feszültséget: ez a 0,2%-os feszültség.

Rideg anyagoknak nincs folyáshatáruk, sem felkeményedő szakaszuk, itt a legnagyobb feszültség és a szakítószilárdság megegyezik.

Anyagok tipikus szilárdsági értékei[szerkesztés]

Anyag Folyáshatár
(MPa)
Legnagyobb feszültség
(MPa)
Sűrűség
(g/cm3)
Szerkezeti acél A36 250 400 7,8
Acél, API 5L X65 (Fikret Mert Veral) 448 531 7,8
Nagyszilárdságú ötvözött acél A514 690 760 7,8
Nagyszilárdságú előfeszített acélhuzal 1650 1860 7,8
Acélhuzal     7,8
Zongorahúr (acél) kb. 2000   7,8
Nagy sűrűségű polietilén (HDPE) 26-33 37 0,95
Polipropilén 12-43 19,7-80 0,91
Korrózióálló acél AISI 302 – (hidegen hengerelt) 520 860  
Öntöttvas 4,5% C, ASTM A-48 130 200  
Titánötvözet (6% Al, 4% V) 830 900 4,51
Alumíniumötvözet 2014-T6 400 455 2,7
Réz 99,9% Cu 70 220 8,92
Réz-nikkel 10% Ni, 1,6% Fe, 1% Mn, Cu 130 350 8,94
Bronz kb. 180+ 250  ;
Volfrám   1510 19,25
Üveg   50 (nyomásra) 2,53
Márvány N/A 15  
Beton N/A 2-5 (húzásra)
(6)-20-60-(200) (nyomásra)
2,4
Szénszál N/A 5650 1,75
Pókselyem 1150 (??) 1200  
Hernyóselyem 500    
Aramid (Kevlar vagy Twaron) 3620   1,44
Ultra nagy molekulasúlyú polietilén (UHMWPE) 23 46 0,97
Vectran   2850-3340  
Fenyőfa (szálirányban)   40  
Csont   130  
Nejlon, 6/6 típus 45 75  
Gumi 15  
Bór N/A 3100 2,46
Szilícium, egykristályos (m-Si) N/A 7000 2,33
Szilícium-karbid (SiC) N/A 3440  
Zafír (Al2O3) N/A 1900 3,9-4,1
Szén nanocső N/A 62000 1,34

Forrás[szerkesztés]

  • Pattantyús Gépész- és Villamosmérnökök kézikönyve. 2. kötet. Műszaki Könyvkiadó, Budapest, 1961
  • A.M. Howatson, P.G. Lund and J.D. Todd, "Engineering Tables and Data"