„Végtelen leszállás” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
a huszadik század számelméletében
→‎Példa: √''k'' irracionális, ha nem egész
13. sor: 13. sor:


Tehát a legkisebb megoldás nem létezik, így semmilyen megoldás nincs, tehát az egyenlet megoldhatatlan.
Tehát a legkisebb megoldás nem létezik, így semmilyen megoldás nincs, tehát az egyenlet megoldhatatlan.
==Példa==
==Példák==
'''Állítás:''' A 2 négyzetgyöke irracionális.
===A 2 négyzetgyöke irracionális===


<math>\sqrt 2</math> pozitív. Feltesszük indirekt, hogy racionális, tehát vannak olyan <math>x,y</math> természetes számok, hogy <math>\sqrt{2}=\tfrac{x}{y}</math>. Négyzetre emelve kapjuk az <math>x^2 = 2\cdot y^2</math> egyenletet, aminek megoldásai az <math>x,y</math> természetes számok. Állítjuk, hogy egy adott <math>x,y</math> megoldásból készíthető egy <math>x_1, y_1</math> megoldás, ami abban az értelemben kisebb, hogy <math>y_1 < y</math>.
<math>\sqrt 2</math> pozitív. Feltesszük indirekt, hogy racionális, tehát vannak olyan <math>x,y</math> természetes számok, hogy <math>\sqrt{2}=\tfrac{x}{y}</math>. Négyzetre emelve kapjuk az <math>x^2 = 2\cdot y^2</math> egyenletet, aminek megoldásai az <math>x,y</math> természetes számok. Állítjuk, hogy egy adott <math>x,y</math> megoldásból készíthető egy <math>x_1, y_1</math> megoldás, ami abban az értelemben kisebb, hogy <math>y_1 < y</math>.
27. sor: 27. sor:


Hasonlóan, ha tetszőleges megoldás helyett a legkisebb megoldásból indulunk ki, akkor a kisebb megoldás létezése megcáfolja annak legkisebb voltát. Érvelhetünk úgy is, hogy minden <math>y_1<y</math>-hoz is készíthető kisebb ''y'', tehát készíthető ''y''-oknak végtelen <math>y>y_1 >y_2 >y_3>\ldots</math> sorozata, ami a természetes számok alulról korlátos volta miatt lehetetlen, tehát ismét ellentmondáshoz jutunk.
Hasonlóan, ha tetszőleges megoldás helyett a legkisebb megoldásból indulunk ki, akkor a kisebb megoldás létezése megcáfolja annak legkisebb voltát. Érvelhetünk úgy is, hogy minden <math>y_1<y</math>-hoz is készíthető kisebb ''y'', tehát készíthető ''y''-oknak végtelen <math>y>y_1 >y_2 >y_3>\ldots</math> sorozata, ami a természetes számok alulról korlátos volta miatt lehetetlen, tehát ismét ellentmondáshoz jutunk.
=== √''k'' irracionális, ha nem egész===
Legyen ''k'' pozitív egész. Belátjuk, hogy ha √''k'' nem egész, akkor irracionális.

Feltesszük, hogy mégis racionális. Legyen √''k'' = <sup>''m''</sup>/⁄<sub>''n''</sub>, ahol <sup>''m''</sup> és ⁄<sub>''n''</sub> a lehető legkisebb természetes számok. Legyen továbbá ''q'' a legnagyobb egész, ami nem kisebb √''k''-nál.

Ekkor

:<math>\begin{align}
\sqrt k&=\frac mn\\[8pt] &=\frac{m(\sqrt k-q)}{n(\sqrt k-q)}\\[8pt]
&=\frac{m\sqrt k-mq}{n\sqrt k-nq}\\[8pt] &=\frac{nk-mq}{m-nq}
\end{align}</math>

azaz √''k'' kifejezhető kisebb suzámokkal, ami ellentmondás.<ref>{{Citation | last = Sagher | first = Yoram | year = 1988 | month = February | journal = [[American Mathematical Monthly]] | volume = 95 | page = 117 | title = What Pythagoras could have done}}</ref>

==Források==
==Források==
* "Das kleine Einmaleins des klaren Denkens: 22 Denkwerkzeuge für ein besseres Leben" von Christian Hesse, Verlag: Beck; Auflage: 2 (14. Mai 2009)
* "Das kleine Einmaleins des klaren Denkens: 22 Denkwerkzeuge für ein besseres Leben" von Christian Hesse, Verlag: Beck; Auflage: 2 (14. Mai 2009)

A lap 2012. december 2., 20:29-kori változata

A végtelen leszállás' egy indirekt bizonyítási módszer, ami azon alapul, hogy a természetes számok minden részhalmazának van legkisebb eleme. A módszert Pierre de Fermat fejlesztette ki, és sok eredményéhez ezzel a módszerrel jutott el. A nagy Fermat-tétel n = 4-hez tartozó speciális esete például belátható végtelen leszállással.

A huszadik század számelmélete újra felfedezte a végtelen leszállást. Hozzákapcsolódott az algebrai számelmélethez és az L-függvényekhez. Mordell eredménye, hogy az elliptikus görbék racionális pontjainak csoportja végesen generált, szintén végtelen leszállással adódott. André Weil ezt az eredményt terjesztette ki magasságfüggvény használatával; ez később úttörőnek bizonyult. A Mordell-Weil tétel nyomán egy egészen új elmélet alakult ki.

Általános eljárás

Az érvelés indirekt, tehát feltesszük, hogy a bizonyítandó állítás nem igaz, vagyis hogy a szóban forgó egyenlet megoldható a természetes számok halmazán. Tudjuk, hogy a természetes számok minden részhalmazának van legkisebb eleme, ezért ha minden feltételezett megoldásból újabb, természetes számokból álló megoldást tudunk készíteni, akkor ellentmondást kaptunk, és a szóban forgó egyenlet nem oldható meg a természetes számok halmazán.

Másként, az egyenlet megoldáshalmazának is van legkisebb eleme, mivel a megoldáshalmaz a természetes számok halmazának része. Ebből készítünk egy még kisebb megoldást a feladat és a természetes számok tulajdonságainak felhasználásával. Ez ellentmond annak, hogy a legkisebb megoldásból indultunk ki, tehát az egyenlet megoldhatatlan.

A megoldhatatlanság induktív bizonyítása

Tegyük fel, hogy egy legkisebb megoldásból tudunk még kisebb megoldást csinálni! Ezen nyugszik a végtelen leszállás alapelve, és amihez konkrét bizonyítás szükséges.

  • Az indukció megkezdése: A legkisebb megoldás nem lehet a 0, mert akkor lenne a 0-nál kisebb természetes szám. Mivel nincs ilyen szám, ezért ellentmondásra jutottunk.
  • Az indukciós feltevés: Feltesszük, hogy már minden kk0-ra bizonyítva van, hogy nem lehet legkisebb megoldás.
  • Az indukciós lépés: Mivel k0 nem lehet a legkisebb megoldás, ezért annak a kk0 számok között kell lennie. Ez ellentmond az indukciós feltevésnek.

Tehát a legkisebb megoldás nem létezik, így semmilyen megoldás nincs, tehát az egyenlet megoldhatatlan.

Példák

A 2 négyzetgyöke irracionális

pozitív. Feltesszük indirekt, hogy racionális, tehát vannak olyan természetes számok, hogy . Négyzetre emelve kapjuk az egyenletet, aminek megoldásai az természetes számok. Állítjuk, hogy egy adott megoldásból készíthető egy megoldás, ami abban az értelemben kisebb, hogy .

Az egyenlőtlenség miatt , tehát is természetes szám. Hasonlóan, miatt , és így szintén természetes szám. Emellett még is teljesül.

Az egyenlet felhasználásával: tehát is megoldása az egyenletnek.

Tudjuk, hogy ha az egyenlet megoldható, akkor van olyan megoldás is, amiben y minimális. Azonban ahogy láttuk, ilyen nincs, mert tetszőleges megoldásból lehet kisebbet készíteni. Eszerint a racionális volta nem állja meg a helyét, tehát irracionális.

Hasonlóan, ha tetszőleges megoldás helyett a legkisebb megoldásból indulunk ki, akkor a kisebb megoldás létezése megcáfolja annak legkisebb voltát. Érvelhetünk úgy is, hogy minden -hoz is készíthető kisebb y, tehát készíthető y-oknak végtelen sorozata, ami a természetes számok alulról korlátos volta miatt lehetetlen, tehát ismét ellentmondáshoz jutunk.

k irracionális, ha nem egész

Legyen k pozitív egész. Belátjuk, hogy ha √k nem egész, akkor irracionális.

Feltesszük, hogy mégis racionális. Legyen √k = m/⁄n, ahol m és ⁄n a lehető legkisebb természetes számok. Legyen továbbá q a legnagyobb egész, ami nem kisebb √k-nál.

Ekkor

azaz √k kifejezhető kisebb suzámokkal, ami ellentmondás.[1]

Források

  1. Sagher, Yoram (1988), "What Pythagoras could have done", American Mathematical Monthly 95: 117