„Végtelen leszállás” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
kategória
A megoldhatatlanság induktív bizonyítása
4. sor: 4. sor:


Másként, az egyenlet megoldáshalmazának is van legkisebb eleme, mivel a megoldáshalmaz a természetes számok halmazának része. Ebből készítünk egy még kisebb megoldást a feladat és a természetes számok tulajdonságainak felhasználásával. Ez ellentmond annak, hogy a legkisebb megoldásból indultunk ki, tehát az egyenlet megoldhatatlan.
Másként, az egyenlet megoldáshalmazának is van legkisebb eleme, mivel a megoldáshalmaz a természetes számok halmazának része. Ebből készítünk egy még kisebb megoldást a feladat és a természetes számok tulajdonságainak felhasználásával. Ez ellentmond annak, hogy a legkisebb megoldásból indultunk ki, tehát az egyenlet megoldhatatlan.
==A megoldhatatlanság induktív bizonyítása==
Tegyük fel, hogy egy legkisebb megoldásból tudunk még kisebb megoldást csinálni! Ezen nyugszik a végtelen leszállás alapelve, és amihez konkrét bizonyítás szükséges.
*Az [[teljes indukció|indukció]] megkezdése: A legkisebb megoldás nem lehet a 0, mert akkor lenne a 0-nál kisebb természetes szám. Mivel nincs ilyen szám, ezért ellentmondásra jutottunk.
*Az indukciós feltevés: Feltesszük, hogy már minden ''k'' ≤ ''k''<sub>0</sub>-ra bizonyítva van, hogy nem lehet legkisebb megoldás.
*Az indukciós lépés: Mivel ''k''<sub>0</sub> nem lehet a legkisebb megoldás, ezért annak a ''k'' ≤ ''k''<sub>0</sub> számok között kell lennie. Ez ellentmond az indukciós feltevésnek.


Tehát a legkisebb megoldás nem létezik, így semmilyen megoldás nincs, tehát az egyenlet megoldhatatlan.
[[Kategória:Matematikai logika]]
[[Kategória:Matematikai logika]]

A lap 2012. november 30., 21:03-kori változata

A végtelen leszállás' egy indirekt bizonyítási módszer, ami azon alapul, hogy a természetes számok minden részhalmazának van legkisebb eleme. A módszert Pierre de Fermat fejlesztette ki, és sok eredményéhez ezzel a módszerrel jutott el. A nagy Fermat-tétel n = 4-hez tartozó speciális esete például belátható végtelen leszállással.

Általános eljárás

Az érvelés indirekt, tehát feltesszük, hogy a bizonyítandó állítás nem igaz, vagyis hogy a szóban forgó egyenlet megoldható a természetes számok halmazán. Tudjuk, hogy a természetes számok minden részhalmazának van legkisebb eleme, ezért ha minden feltételezett megoldásból újabb, természetes számokból álló megoldást tudunk készíteni, akkor ellentmondást kaptunk, és a szóban forgó egyenlet nem oldható meg a természetes számok halmazán.

Másként, az egyenlet megoldáshalmazának is van legkisebb eleme, mivel a megoldáshalmaz a természetes számok halmazának része. Ebből készítünk egy még kisebb megoldást a feladat és a természetes számok tulajdonságainak felhasználásával. Ez ellentmond annak, hogy a legkisebb megoldásból indultunk ki, tehát az egyenlet megoldhatatlan.

A megoldhatatlanság induktív bizonyítása

Tegyük fel, hogy egy legkisebb megoldásból tudunk még kisebb megoldást csinálni! Ezen nyugszik a végtelen leszállás alapelve, és amihez konkrét bizonyítás szükséges.

  • Az indukció megkezdése: A legkisebb megoldás nem lehet a 0, mert akkor lenne a 0-nál kisebb természetes szám. Mivel nincs ilyen szám, ezért ellentmondásra jutottunk.
  • Az indukciós feltevés: Feltesszük, hogy már minden kk0-ra bizonyítva van, hogy nem lehet legkisebb megoldás.
  • Az indukciós lépés: Mivel k0 nem lehet a legkisebb megoldás, ezért annak a kk0 számok között kell lennie. Ez ellentmond az indukciós feltevésnek.

Tehát a legkisebb megoldás nem létezik, így semmilyen megoldás nincs, tehát az egyenlet megoldhatatlan.