Pascal-tétel

A Wikipédiából, a szabad enciklopédiából
Jump to navigation Jump to search
A kúpszeletbe írt ABCDEF hatszög szemben fekvő oldalai a Pascal-egyenesen metszik egymást. A Pascal-egyenes fehér.

A Blaise Pascalról elnevezett Pascal-tétel klasszikus tétel a projektív síkgeometriában.

Legyenek a kúpszeletbe írt hatszög csúcsai 1, 2, 3, 4, 5, 6 (a csúcsok a kúpszeletre illeszkednek). Ekkor az

pontok egy egyenesre esnek.

Duálisa a Brianchon-tétel.

A Brianchon-tétel és a Pascal-tétel alkalmazásaként lehetséges kúpszelethez pontokat és érintőket csak vonalzóval szerkeszteni.[1]

Bizonyítás[szerkesztés]

A tétel bizonyítása a kettősviszony és a sugársorok képződményének felhasználásával történik.

Jelölje X a és Y a pontot. Tekintsük a kúpszeletet a 2-re és a 6-ra illeszkedő sugársorok projektív képződményének. Ekkor

Homogén koordinátákkal tovább számolva adódik a tétel.

Jegyzetek[szerkesztés]

Források[szerkesztés]