Ugrás a tartalomhoz

Korrelációs együttható

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A korrelációs együtthatót egy összefüggés numerikus mérésére alkalmazzuk, amely két változó közötti statisztikai kapcsolatot jellemzi.[1] A változók lehetnek egy adott megfigyelési adatkészlet két oszlopa, amelyet gyakran mintának hívnak, vagy egy többváltozós, ismert eloszlású véletlen változó két összetevője.  

Különböző típusú korrelációs együtthatók léteznek. Mindegyik −1 és +1 közötti értéket vehet fel, ahol ± 1 a lehető legerősebb egyezést és 0 a lehető legnagyobb eltérést jelzi.[2] Az elemzés eszközeként a korrelációs együtthatók problémát is jelentenek, ideértve a kiugró értékek torzítását, valamint annak lehetőségét, hogy helytelenül használják fel a változók közötti okozati összefüggés következtetésére. [3]

Típusok

[szerkesztés]

Pearson

[szerkesztés]

A Pearson-féle korrelációs együttható, más néven r, R, vagy Pearson-féle R, olyan mérőszám, amely az erősségét és az irányát mutatja meg egy lineáris kapcsolat két változója között, amely a változók kovarianciája osztva a standard szórás. Ez a korrelációs együttható legismertebb és leggyakrabban használt típusa. Ha a "korrelációs együttható" kifejezést minősítés nélkül használjuk, ez általában a Pearson eredmény-időpont korrelációs együtthatóra utal.

Osztályon belüli

[szerkesztés]

A csoporton belüli korreláció (ICC) egy leíró statisztika, amely akkor használható, ha kvantitatív méréseket végzünk csoportokba rendezett egységeken. Megmutatja, hogy az azonos csoport egységei mennyire hasonlítanak egymáshoz.

A rangkorreláció két változó rangsora vagy ugyanazon változó két rangsorolása közötti kapcsolat mérése:

Tetrakorikus és polikorikus

[szerkesztés]

A polikorikus korrelációs együttható két rendezett-kategorikus változó asszociációját méri. Technikai szempontból úgy határozza meg, hogy a Pearson-féle korrelációs együttható becslését akkor kapnánk, ha (1) a két változót folyamatos skálán mérjük, nem pedig rendezett kategóriájú változóként, és (2) a két folyamatos változó kétváltozós normál eloszlást követ. Ha mindkét változó dichotómikus, nem pedig rendezett-kategorikus, akkor a polikorikus korrelációs együtthatót tetrakorikus korrelációs együtthatónak nevezzük.

Jegyzetek

[szerkesztés]
  1. correlation coefficient. NCME.org. National Council on Measurement in Education. [2017. július 22-i dátummal az eredetiből archiválva]. (Hozzáférés: 2014. április 17.) „correlation coefficient: A statistic used to show how the scores from one measure relate to scores on a second measure for the same group of individuals. A high value (approaching +1.00) is a strong direct relationship, values near 0.50 are considered moderate and values below 0.30 are considered to show weak relationship. A low negative value (approaching -1.00) is similarly a strong inverse relationship, and values near 0.00 indicate little, if any, relationship.”
  2. Taylor, John R.. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd, Sausalito, CA: University Science Books, 217. o. (1997. november 2.). ISBN 0-935702-75-X. Hozzáférés ideje: 2019. február 14. 
  3. Boddy, Richard. Statistical methods in practice: for scientists and technologists. Chichester, U.K.: Wiley, 95–96. o. (2009. november 2.). ISBN 978-0-470-74664-6 

Fordítás

[szerkesztés]

Ez a szócikk részben vagy egészben a Correlation coefficient című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.

Kapcsolódó szócikkek

[szerkesztés]