Fresnel-egyenletek

A Wikipédiából, a szabad enciklopédiából

A Fresnel-egyenletek megadják, hogy a beeső fény intenzitásának hányad része verődik vissza, illetve hányad része lép be a másik közegbe, amikor egy fénynyaláb két különböző közeg határfelületéhez érkezik. Az összefüggéseket az éterelméletből levezetve Augustin-Jean Fresnel írta fel először, ezért róla kapták nevüket. Fizikailag helyes megalapozást azonban csak később a Maxwell-egyenletek megszületése után nyertek.[1]

Polarizált eset[szerkesztés]

Az egyik egyenlet azt az esetet írja le, amikor a fény polarizációja párhuzamos a fényt visszaverő felülettel, a másik eset pedig azt írja le, amikor a polarizáció merőleges a felületre.[2]

     

Mivel a λ hullámhossztól függő törésmutató fémeknél komplex szám, ezért a törésmutató valós részét v, a képzetes részét κ jelöli. A j pedig az imaginárius egység. A θ' a felület normálvektora és a megvilágítási irány szöge, a θ pedig a visszaverődési irány és a felületi normálvektor szöge.

Polarizálatlan eset[szerkesztés]

A nem poláros fény ábrázolására az egyik szokásos eljárás, hogy a hullám elektromos térerősségvektorát két egymásra merőleges összetevőre bontjuk ( és ) majd összegezzük. A két összetevő amplitúdója azonos, átlagos értéke egyenlő egymással, de közöttük rendezetlen és gyorsan változó fázisviszonyok vannak.[3] A továbbiakban az amplitúdókat egységnyinek tekintjük, azaz:

Felhasználva a vektorok skaláris szorzásának az abszolútértékre vonatkozó következő azonosságát:

valamint a skaláris szorzás disztributivitása miatt használható binomiális tételt, a következő egyenlethez jutunk:

Források[szerkesztés]

  1. Simonyi Károly: A fizika kultúrtörténete, Gondolat Kiadó, Budapest, 1981)
  2. Dr Szirmay-Kalos L, Antal Gy, Csonka F: Háromdimenziós grafika, animáció és játékfejlesztés 118.old. Budapest, Computer Books, 2003. ISBN-963-618-303-1
  3. Alvin Hudson, Rex Nelson: Útban a modern fizikához, 960. old. LSI Oktatóközpont, 1994. ISBN-963-577-197-5