„Neumann–Bernays–Gödel-halmazelmélet” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[nem ellenőrzött változat][nem ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
40. sor: 40. sor:
:'''E<small>GYESÍTÉSI AXIÓMA</small>''' – Ha ''H'' halmaz, akkor az &cup;H := { x | (&exist;y)( y &isin; H &#8743; x &isin; y ) } unióosztály halmaz.
:'''E<small>GYESÍTÉSI AXIÓMA</small>''' – Ha ''H'' halmaz, akkor az &cup;H := { x | (&exist;y)( y &isin; H &#8743; x &isin; y ) } unióosztály halmaz.


Definiálható halmazok ''[[rendezett pár]]''jának fogalma ( {{a},{a,b}} ), ''osztályok Descartes-szorzata'' ( A &times; B := { (x,y) | x &isin; A &#8743; y &isin; B } ) és az osztályok között ható funktor fogalma. A ''funktor'' olyan osztály, mely az A és B osztályok Descartes-szorzatának olyan F részosztálya, amely egyrészt a második változójában egyértelmű, azaz ha (x,y<sub>1<sub>) &isin; F és (x,y<sub>2<sub>) &isin; F, akkor y<sub>1<sub> = y<sub>2<sub> és másrészt a párok első tagjaként az összes A-beli elem részt vesz. Ha egy funktor halmaz, akkor ''függvény''nek nevezik.
Definiálható halmazok ''[[rendezett pár]]''jának fogalma ( {{a},{a,b}} ), ''osztályok Descartes-szorzata'' ( A &times; B := { (x,y) | x &isin; A &#8743; y &isin; B } ) és az osztályok között ható funktor fogalma. A ''funktor'' olyan osztály, mely az A és B osztályok Descartes-szorzatának olyan F részosztálya, amely egyrészt a második változójában egyértelmű, azaz ha (x,y<sub>1<sub>) &isin; F és (x,y<sub>2<sub>) &isin; F, akkor y<sub>1<sub> = y<sub>2<sub> és másrészt a párok első tagjaként az összes A-beli elem részt vesz. Azt, hogy F egy A-ból B-be menő funktor úgy jelöljük, hogy F: A <math>\rightarrow</math> B. Ha egy funktor halmaz, akkor ''függvény''nek nevezik. Egy F: A <math>\rightarrow</math> B funktor értékkészlete azon elemekből áll, melyeket az a B osztályból elér, azaz F(A) := { F(x) | x &isin; A }. Ha I és A nem üres osztály, akkor egy I''-vel indexelt osztályrendszer'' olyan (A<sub>i<sub>)<sub>i&isin;I<sub> funktor, mely I elemeihez A elemeit rendeli. Ha I halmaz, akkor az (A<sub>i<sub>)<sub>i&isin;I<sub> rendszer &times;<sub>i&isin;I<sub>A<sub>i<sub> ''Descartes-szorzat''a mindazon f: I <math>\rightarrow</math> &cup;A ''kiválasztó függvény''ek összessége, melyek olyanok, hogy minden i&isin;I-re f(i) &isin; A<sub>i<sub>.


[[Kategória: Halmazelmélet]]
[[Kategória: Halmazelmélet]]



A lap 2006. május 2., 08:34-kori változata

A Neumann–Bernays–Gödel-halmazelmélet (kódja NBG) a matematika egy nagy jelentősségű formális-axiomatikus rendszere, mely a halmazelméletet kívánja egy, a Zermelo–Fraenkel-halmazelmélethez hasonló módon formalizálni. A leglényegesebb különbség az NBG és a ZFC (a Zermelo–Fraenkel-axiómarendszer kibővítve a kiválasztási axiómával) között, hogy az NBG-ben közvetlenül hivatkozhatunk a valódi osztályokra, míg a ZFC-ben csak némi "ügyeskedéssel" tehetjük ezt. Az NBG azáltal, hogy nagyobb rálátást biztosít a halmazokra, a matematika tágabb területein alkalmazható hatékonyan, mint például a kategóriaelmélet vagy a halmezelmélet egészét vizsgáló modellelmélet. Mindazonáltal ez az előny csak látszólagos (nyelvi eredetű) tekintve, hogy a két elmélet ekvikonzisztens (NBG a ZFC konzervatív bővítése).

Az elmélet kifejtése

Az elmélet nyelvében két logikai relációjel szerepel, az egyenlőség szimbóluma ( = ) és az eleme szombólum ( ∈ ). Az egyenlőség tulajdonságait a predikátumkalkulus szokásos logikai szabályai rögzítik, az eleme jel tulajdonságait a matematikai axiómákban fogalmazzák meg. A változók szándékolt módon osztályokat jelölnek, tehát a halmaz fogalmát ebben az elméletben definiálni lehet.

Most egy olyan axiómarendszert mutatunk be, mely szellemében a legközelebb áll a ZFC rendszerhez.

Azt mondjuk, hogy az x osztály halmaz, ha tétel az alábbi Set(x)-szel jelölt formula:

(∃y)(x ∈ y)

Tehát ha van legalább egy olyan y osztály, melynek x eleme. Ellenkező esetben (tehát ha a ¬(∃y)(x ∈ y) formula tétel) az x osztály valódi osztály.

AZ EXTENZIONALITÁS AXIÓMÁJA – Ha két osztálynak azonosak az elemei, akkor a két osztály egyenlő, azaz ha x és y osztály, akkor
(∀z)(z ∈ x ⇔ z ∈ y) ⇒ (x = y)

(Az "extenzionalitás" kifejezés arra utal, hogy minden osztályra úgy gondolunk, ahogy a logikában a predikátumok extenziójára, igazságtartományára. Két osztály így tehát akkor egyenlő, ha ekvivalens predikátumok igazságtartományaiként fogható fel. Az axiómát gyakran még meghatározottsági axiómának is hívják, mert eszerint az osztályokat semmi más, csak elemei határozzák meg.)

A KORLÁTOZOTT KOMPREHENZIVITÁS AXIÓMÁJA – Ha P(x) az elmélet predikátuma, akkor létezik olyan osztály, mely azokat a halmazokat tartalmazza, melyekre P(x) igaz, azaz
(∃y)(∀x)( x ∈ y ⇔ (Set(x) ∧ P(x)) )

Az extenzionalitás axiómája alapján belátható, hogy ha az ilyen tulajdonságú osztály létezik, akkor az egyértelmű. A P(x) tulajdonságú halmazok osztályát a következőképpen jelöljük:

(A "komprehenzív" kifejezés arra utal, hogy az axióma szándékozik "összegyűjteni" mindazon elemeket egy osztályba, melyre a P(x) formula tétel. A "korlátozott" szó pedig arra utal, hogy elemként íly módon csak halmazokat gyűjthetünk össze. Az axiómár gyakran még elkülönítési axiómának is nevezik.)

Ebből az axiómából két, kardinális jelentősségű halmaz létezése következik. Az első a Russell-összesség, azaz a

osztály, mely az alábbiak szerint valódi osztály. Tegyük fel, hogy Ru halmaz. Ekkor a komprehenzivitás axiómája szerint minden x-re: xRu ⇔ (Set(x) ∧ ¬(x ∈ x)). Ha most x helyére Ru-t helyettesítünk, akkor azt kapjuk, hogy RuRu ⇔ (Set(Ru) ∧ ¬( RuRu)), amely csak úgy lehet, ha Set(Ru) nem teljesül, hiszen ellenkező esetben ellentmondásra jutunk. De azt tettük fel, hogy Ru halmaz, ami szintén ellentmondás, tehát Ru nem halmaz, hanem valódi osztály.

A második fontos osztály az

definiálta üres osztály. Azt még nem lehet tudni, hogy ez halmaz-e, sőt azt sem, hogy léteznek-e egyáltalán halmazok, ezért a következő axióma ezt fogja biztosítani.

A LÉTEZÉS AXIÓMÁJA – Létezik halmaz.

A később említendő részhalmaz axióma miatt ebből rögtön következik, hogy az üres osztály halmaz, mert az üres osztály minden osztálynak részosztálya. Megjegyezzük, hogy még a komprehenzivitási axióma nélkül sem kell feltennünk, hogy létezik osztály, hiszen a rendszer minden termje osztályt jelöl, így az osztályok, mint termek nyelvi értelemben léteznek. Gyakran az axiómát úgy fogalmazzák meg, hogy az üres osztály halmaz.

Mindezek után sorra megkövetelik a ZFC rendszer összes axiómáját halmazokra relativizálva.

RÉSZHALMAZ AXIÓMA – Minden halmaz részosztálya is halmaz.
PÁRAXIÓMA – Ha a és b halmaz, akkor az {a,b} := { x | x=a ∨ x=b } osztály halmaz.
HATVÁNYHALMAZ AXIÓMA – Ha H halmaz, akkor a P(H) := { x | x ⊆ H } hatványosztály is halmaz.
EGYESÍTÉSI AXIÓMA – Ha H halmaz, akkor az ∪H := { x | (∃y)( y ∈ H ∧ x ∈ y ) } unióosztály halmaz.

Definiálható halmazok rendezett párjának fogalma ( {{a},{a,b}} ), osztályok Descartes-szorzata ( A × B := { (x,y) | x ∈ A ∧ y ∈ B } ) és az osztályok között ható funktor fogalma. A funktor olyan osztály, mely az A és B osztályok Descartes-szorzatának olyan F részosztálya, amely egyrészt a második változójában egyértelmű, azaz ha (x,y1) ∈ F és (x,y2) ∈ F, akkor y1 = y2 és másrészt a párok első tagjaként az összes A-beli elem részt vesz. Azt, hogy F egy A-ból B-be menő funktor úgy jelöljük, hogy F: A B. Ha egy funktor halmaz, akkor függvénynek nevezik. Egy F: A B funktor értékkészlete azon elemekből áll, melyeket az a B osztályból elér, azaz F(A) := { F(x) | x ∈ A }. Ha I és A nem üres osztály, akkor egy I-vel indexelt osztályrendszer olyan (Ai)i∈I funktor, mely I elemeihez A elemeit rendeli. Ha I halmaz, akkor az (Ai)i∈I rendszer ×i∈IAi Descartes-szorzata mindazon f: I ∪A kiválasztó függvények összessége, melyek olyanok, hogy minden i∈I-re f(i) ∈ Ai.