Törésmutató

A Wikipédiából, a szabad enciklopédiából

Az elektromágneses hullámok terjedési sebessége egy anyagi közegben kisebb, mint a vákuumban. Ennek a mértéke a törésmutató, ami a következő összefüggés szerint adható meg:

,

ahol n a közeg törésmutatója, pontosabban fázistörésmutatója, c0 a fény vákuumbeli, c pedig a közegbeli terjedési sebessége.[1]

A relatív törésmutató[szerkesztés]

Fenti definíció az abszolút törésmutatót adja meg, hiszen a fény közegbeli terjedési sebességének és a vákuumbelinek a viszonyát fejezi ki. A relatív törésmutató az adott anyagban való terjedést egy másik közegbeli terjedéshez viszonyítja a következő módon:

ahol a második közeg első közegre vonatkozó relatív törésmutatója. Fentiekből az is következik, hogy a két közeg abszolút törésmutatója és relatív törésmutatója között a következő a kapcsolat:

A törésmutatót a gyakorlatban többnyire a látható fény számára meglehetősen átlátszó anyagok tulajdonságának leírására használják és a levegőhöz viszonyítva adják meg. Mivel a levegő abszolút törésmutatója 1,00029, azaz elég jól közelítéssel 1, a víz 1,33-as törésmutatója például azt jelenti, hogy a fény 1,33-szor gyorsabban terjed a levegőben, mint a vízben.

A törésmutató mérése[szerkesztés]

kézi refraktométer

A mérési eljárások átlátszó anyagok esetén leggyakrabban a teljes visszaverődés jelenségét kihasználják ki. Az optikailag sűrűbb közegből ritkább felé haladó, a határszögnél nagyobb szögben érkező fénysugarak nem jutnak ki, a két közeg határfelületén visszaverődnek. A határszög szinuszára a fénytörés törvényéből következően az alábbi összefüggés érvényes:

, ahol .

Ha például a fénysugár vízből a víz-levegő határfelületre érkezik, akkor . . és így , ahonnan °.

A határszög mérésével a törésmutató meghatározható.

Egy folyékony közegben, oldatban a törésmutató az összetétellel változik, így a törésmutató mérésével megadhatjuk az oldott anyag koncentrációját, illetve a koncentrációval kapcsolatban lévő más fizikai paramétert. Például kézi refraktomérrel a törésmutató mérésén keresztül mérik az autókban lévő hűtőfolyadék – etilénglikol-víz keverék – fagyáspontját.

Törésmutató adatok[szerkesztés]

Néhány anyag = 589 nm-en mért relatív törésmutatója (pontosabb és részletesebb adatok referenciaként is[2][3])

anyag n
vákuum 1
Gázok 0°C-on és légköri nyomáson
levegő 1,000293
hélium 1,000036
hidrogén 1,000132
szén-dioxid 1,00045
folyadékok 20 °C-on
víz 1,333
etanol 1,36
olívaolaj 1,47
szilárd anyagok
jég 1,309
műanyagok 1,45-1,65
üvegek 1,45-1,7
gyémánt 2,42

Fázistörésmutató kapcsolata más anyagi paraméterekkel[szerkesztés]

Az elektromágneses hullámok terjedési sebessége egy adott közegben kapcsolatban van az anyag elektromos és mágneses tulajdonságaival, amit a következő összefüggés is kifejez[4]:

ahol εr az anyag relatív permittivitása, és μr a relatív permeabilitása. A nemmágneses anyagoknál μr közel 1, ebben az esetben .

A diszperzió jelensége miatt a fény terjedési sebessége, így a törésmutató értéke is egy adott anyag esetében általában kissé változik a hullámhossz függvényében. Néha azzal arányosan, máskor pedig azzal fordított arányban. Így, ezen anyagok megfelelő kombinációjával gyakorlatilag kiküszöbölhető a nem csak egyszínű lézerfénnyel dolgozó optikai rendszerek egyik általános hibája, a kromatikus aberráció.

Hullámcsomag törésmutatója[szerkesztés]

A fázistörésmutató fenti definíciója az egyszínű, monokromatikus hullámokra érvényes, a monokromatikus hullámok azonban csak idealizált modellek. A fényhullámok valójában monokromatikus hullámok szuperpozíciójából állnak elő hullámcsomag formájában[5]:

Egy z irányban terjedő hullámcsomagot a következő

formában tárgyalhatunk, ahol

az körfrekvenciájú hullámkomponens hullámszáma, c pedig a vákuumbeli fény sebessége.

Egy hullámcsomag terjedését ezen a fázissebességen kívül a csoportsebessége jellemzi

, amiből

hullámhosszra átírva:

Kettősen törő kristályok törésmutatója[szerkesztés]

Kettősen törő kristályokban az aszimmetrikus belső szerkezet miatt a fény terjedési sebessége a különböző kristálytengelyek irányában különbözik. Így az adott irányokhoz más-más törésmutató rendelhető. A kristályba belépő fény két külön nyalábra bomlik, egyik az ordinárius, a másik az extraordinárius sugár. Az elnevezés arra utal, hogy az egyik követi a fénytörés törvényét, a másik nem. A permittivitás sem skalár mennyiség, hanem egy tenzor. A fény kristályon való áthaladását – a kettőstörést – az tenzor szabja meg, ahol a lineáris szuszceptibilitás tenzor. Veszteségmentes esetben tenzor szimmetrikus (megfelelő koordináta-rendszerben diagonális). Amennyiben mindhárom diagonális elem különbözik, kéttengelyű, amennyiben kettő megegyezik, egytengelyű kettősen törő kristályról beszélünk. Ha mindhárom elem megegyezik, a kristály izotróp.

A dielektromos tengelyrendszerben felírt (itt diagonális ) Maxwell-egyenletekbe helyettesítve a hullámszámvektorral jellemzett síkhullámot, valamint felhasználva, hogy , az

Fresnel-egyenlethez jutunk. Ezen egyenletnek minden terjedési irányra két egymásra merőleges polarizációjú megoldása van -re, így -ra is.

Komplex törésmutató[szerkesztés]

Abszorbeáló közegek optikai tulajdonságainak jellemzésére a komplex törésmutatót használják. Definíciója a komplex permittivitás definíciójának mintájára:

ahol n és a valós és képzetes részt jelölik, i pedig az imaginárius egység, i 2 = −1.

A valós rész – a már fentebb megismert – a fény közegbeli terjedési sebességével kapcsolatos törésmutató. pedig az abszorpciómutató, egy dimenzió nélküli mennyiség. Az elnyelődés mértékét szokásos még az -val jelölt abszorpciós együtthatóval is jellemezni:

ahol a körfrekvencia, f a frekvencia, a hullámhossz. Az abszorpciós együtthatót legtöbbször 1/cm mértékegységben adják meg.

A komplex törésmutató és a komplex permittivitás nemmágneses anyagoknál ugyanolyan kapcsolatban vannak egymással, mint a valós részeik, azaz:

.

Egy anyag elektromos térrel szembeni viselkedését a komplex permittivitása befolyásolja, mivel a fény elektromágnes hullám, így érthető, hogy a közegbeli terjedését, elnyelődését leíró optikai paraméterek mind-mind kapcsolatban vannak egymással. Megmutatható, hogy a komplex permittivitás valós illetve képzetes része és a törésmutató illetve és az abszorpciómutató között a következő összefüggések adhatók meg:

.

Kapcsolódó szócikkek[szerkesztés]

Források[szerkesztés]