„Számtani közép” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
TaBOT-zerem (vitalap | szerkesztései)
a r2.6.4) (Bot: következő hozzáadása: eo:Aritmetika meznombro
107. sor: 107. sor:
[[cs:Aritmetický průměr]]
[[cs:Aritmetický průměr]]
[[de:Arithmetisches Mittel]]
[[de:Arithmetisches Mittel]]
[[eo:Aritmetika meznombro]]
[[es:Media aritmética]]
[[es:Media aritmética]]
[[et:Aritmeetiline keskmine]]
[[et:Aritmeetiline keskmine]]

A lap 2010. december 6., 13:47-kori változata

Számtani vagy aritmetikai középértéken darab szám átlagát, azaz a számok összegének -ed részét értjük. A számtani közepet általában betűvel jelöljük:

Értelmezése

Az a és a b számok számtani közepe m akkor és csak akkor, ha m-a=b-m.

Legyenek ugyanolyan eloszlású, egymástól független valószínűségi változók μ várható értékkel és σ szórással, akkor az középérték szintén μ körül ingadozik, és szórása kisebb, . Ha tehát egy valószínűségi változó várható értéke és szórása is véges, akkor a Csebisev-egyenlőtlenség miatt a mintaközép a minta elemszámának növelésével sztochasztikusan konvergál a valószínűségi változó várható értékéhez. Tehát a számtani közép alkalmas a várható érték becslésére, viszont érzékeny a nem tipikus adatokra (lásd: medián).

A számtani középre vonatkozó alaptétel

Tétel: Ha a,b,c valós számok, és b=A(a,c), vagyis b az a és c számok számtani közepe, akkor b-a = c-b = (c-a)/2. Szemléletesen ez azt jelenti, hogy b az a és a c számoktól egyenlő távolságra (vagyis „középen”) helyezkedik el a számegyenesen. Valóban, hiszen ha , akkor és .

Adott valós számok számtani középértéke nem lehet kisebb, mint a számok legkisebbike, és nem lehet nagyobb, mint a számok legnagyobbika:


Algebrai tulajdonságok

Ha a tetszőleges számsorozatot teszőlegesen hosszan bővítjük e számok számtani közepével, akkor az így kibővített sorozat tagjainak számtani középértéke megegyezik az eredeti számtani középpel:

A számtani és mértani közép közötti egyenlőtlenség:

Számtani sorozatok

Számtani sorozatban – az elsőt kivéve – bármelyik tag a két szomszédjának számtani közepe. Általában tag az és tagok számtani közepe, ha pozitív egészek. Ennek megfordítása is igaz (ha egy sorozatban bármely két tag a szomszédos tagok számtani közepe, akkor az egy számtani sorozat), mégpedig egyszerű következménye a számtani középre vonatkozó alaptételnek.

Súlyozott számtani közép

A számtani középnek súlyozott változata is értelmezhető. Alkalmazzák például a keverési feladatokban, a valószínűségszámításban és a statisztikában.

A súlyozott számtani közép számítása:

.

ahol az xi számok rendre a wi súlyokkal szerepelnek.

A keverési feladatokban xi jelöli a koncentrációt, vagy a hőmérsékletet, és wi a térfogatot, vagy a tömeget.

A statisztikai alkalmazásokban az xi adatpontokhoz tartozó wi súlyok azt mutatják, hogy az adott adatpont hányszor jelenik meg a mintában.

Több minta összetevésekor az egyes minták középértékeit a megfelelő minták elemszámával súlyozzák.

A valószínűségszámításban, ha az valószínűségi vektorváltozók közös várható értéke , de szórásuk rendre , akkor a súlyozott középérték körül ingadozik, és szórásnégyzete

.

Ha most

,

akkor

.

A Chauchy–Schwarz–Bunyakovszkij-egyenlőtlenség alapján

.

A választás minimalizálja a középérték szórását. A súlyok választása mutatja, hogy melyik adatnak mekkora fontosságot tulajdonítunk.

Alkalmazás

A számtani közepet additív – magyarul összeadható – mennyiségek átlagolására használjuk (például magasságok átlaga, testsúlyok átlaga stb.)

Függvény középértéke

A Riemann-integrálható függvények középértéke a számtani közép általánosításaként fogható fel.

Az Riemann-integrálható függvény középértéke

Ha most egyenlő osztásközöket veszünk, ahol osztópontok, és a két szomszédos osztópont közötti távolság , akkor az

számtani közép tart az középértékhez.

Ha f folytonos, akkor az integrálszámítás középértéktétele szerint létezik , amire , a függvény legalább egy helyen felveszi középértékét.

A középértéknek is van súlyozott változata, ahol is a súlyfüggvény pozitív minden -re. Ekkor a súlyozott középérték

.

Az mértéktérben, ahol , a Lebesgue-integrálható függvények középértéke

.

Valószínűségi tér esetén, ahol , a középérték az

alakra hozható, ami éppen az f(x) várható értéke.

Kapcsolat más közepekkel

Legyen f egy I intervallumon értelmezett szigorúan növő folytonos függvény. Legyenek továbbá adva a súlyok. Ekkor az számok -vel súlyozott kvázi-aritmetikus közepe

.

Nyilván

Így a különböző f függvényekkel különböző közepek definiálhatók. visszaadja a számtani közepet, a mértani közepet, és a k-adik hatványközepet.

Mindezek a közepek függvényekre is általánosíthatók. Ehhez azt kell még kikötni, hogy az f függvény értelmezési tartománya tartalmazza az u függvény képhalmazát. Ekkor az u függvény középértéke:

Lásd még

Külső link